Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm ba phân số khác nhau biết phân số thứ nhất và phân số thứ hai là 7/8,tổng của phân số thứ hai và phân số thứ ba là 8/7,tổng của phân số thứ nhất và phân số thứ ba là 8/9
B A D C O M E
a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
=> Tứ giác ABCD là hình vuông
+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:
=> \(AB^2=OA^2+OB^2=2R^2\)
Khi đó diện tích tứ giác ABCD:
\(S=AB^2=2R^2\)
b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)
Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC
Theo Pytago thuận ta có:
\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)
\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)
c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC
Tương tự, ta có OAE=OEA
=> OEA=MCA
=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)
\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)
b) Xét ΔFDC có
A\(\in\)FD(gt)
B\(\in\)FC(gt)
AB//CD(gt)
Do đó: \(\dfrac{FA}{AD}=\dfrac{FB}{BC}\)(Định lí Ta lét)
\(\Leftrightarrow\dfrac{FA}{FB}=\dfrac{AD}{BC}=1\)
hay FA=FB
Ta có: FA+AD=FD(A nằm giữa F và D)
FB+BC=FC(B nằm giữa F và C)
mà FA=FB(cmt)
và AD=BC(ABCD là hình thang cân)
nên FD=FC
Ta có: FA=FB(cmt)
FD=FC(cmt)
Do đó: \(FA\cdot FD=FB\cdot FC\)(đpcm)
a) Ta có: ABCD là tứ giác nội tiếp(gt)
nên \(\widehat{A}+\widehat{C}=180^0\)(hai góc đối)(1)
Ta có: ABCD là hình thang(AB//CD)
nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)(2)
Từ (1) và (2) suy ra \(\widehat{C}=\widehat{D}\)
Hình thang ABCD(AB//CD) có \(\widehat{C}=\widehat{D}\)(cmt)
nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Cho hình bình hành ABCD có góc A nhọn (AB<AD) Tia phân giác BAD cắt BC tại M và cắt DC tại N Gọi K là tâm đường tròn ngoại tiếp tam giác MCN
a) C/m: DN=BC và CK vuông góc MN
Do ∡A nhọn và AB < AD nên tia phân giác ∡A cắt
BC tại M∊đoạn BC và N ngoài đoạn DC ( C nằm giữa D,N)
∡BAM = ∡MAD (AM là pg) và ∡BAN = ∡DNA (sl trong)
→∡DAN = ∡DNA → ∆ADN cân đỉnh D → DN = AD = BC
Xét ∆MCN có ∡DAN = ∡DNA ( cm trên) ,
∡DAN = ∡CMN ( đồng vị) →∡CNM = ∡CMN
→ ∆MCN cân đỉnh C → K thuộc trung trực MN
→ CK vuông góc MN
b) C/m BKCD nội tiếp
Gọi E là trung điểm MC, F là trung điểm CN ta có :
KE vuông góc MC, KF vuông góc CN , BE = DF
xét ∆KEC và ∆KFC là 2 ∆ vuông có CK chung,
∡ECK = ∡FCK ( ∆MCN tại C và CK là trung trực, pg...)
→ ∆KEC = ∆KFC → EK = FK
xét hai tam giác vuông ∆KEB và ∆KFD có BE = DF (cm trên)
KE = KF (cm trên) → ∆KEB = ∆KFD →∡KBE = ∡KDF
hay ∡KBC = ∡KDC . B và D cùng phía so với đường thẳng
CK mà ∡KBC = ∡KDC → B, C, D, K thuộc đường tròn
( quỹ tích cung chứa góc ) → BKCD nội tiếp
bức tranh được UNESCO công nhận là bức tranh đẹp nhất thế giới. Có 1 0 2