K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

   Trên tia đối của FA lấy điểm H sao cho MF=FA 

khi đó tứ giác ACMD là hình bình  hành suy ra : AD//CD do đó 

                       GOC DCM =ADC=80 do 

                          suy ra : góc BCM =BCD+DCM 

                                           BCM =40+80

                                           BCM=120

                   VÌ  ACMD là hình bình hành nên :CM =AD=BC SUY RA TAM GIÁC BCM CÂN TẠI C

                           TA CÓ GÓC BCM =120 ĐỘ ==>CMD =30 ĐỘ 

 RỒI BẠN TỰ LÀM TIẾP ĐI MÌNH GỢI Ý CHO RỒI NHA

17 tháng 10 2017

cảm ơn nha

18 tháng 9 2016

hhjj

18 tháng 9 2016

z ma cung goi la tra loi

30 tháng 8 2015

mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt

28 tháng 7 2018

#naruto Có ai hỏi bạn đâu mà trả lời

11 tháng 8 2018

a) Vì FE là ĐTB của hình thang => FE//AB//CD

E, F là trung bình của AD và BC nên AK = KC 

=> IC = ID

P/s: ko chắc

18 tháng 9 2017

A B C D E F O G H K

Trên tia đối của ED lấy điểm K sao cho E là trung điểm của DK.

Xét \(\Delta\)DAE=\(\Delta\)KBE (c.g.c) => AD=BK (2 cạnh tương ứng)

Mà AD=BC => BK=BC => \(\Delta\)BKC cân tại B => ^BCK=(1800-^KBC)/2 (1)

Lại có: ^DAE=^KBE (2 góc tương ứng) => AD//BK (2 góc so le trg bằng nhau)

hay OH//BK => ^HOG=^KBC ( Đồng vị) (2)

E là trung điểm DK; F là trung điểm DC => EF là đường trung bình \(\Delta\)DKC

=> EF//KC hay HG//KC => ^OGH=^BCK (3)

Thay (2) và (3) vào (1); ta được: ^OGH=(1800-^HOG)/2 => \(\Delta\)HOG cân tại O

=> OG=OH (đpcm)

1: Xét ΔCAB có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔCAB

=>FE//AB và \(FE=\dfrac{AB}{2}\)

Xét ΔDAB có

G,H lần lượt là trung điểm của DA,DB

=>GH là đường trung bình của ΔDAB

=>GH//AB và \(GH=\dfrac{AB}{2}\)

GH//AB

FE//AB

Do đó: GH//FE

Ta có: \(GH=\dfrac{AB}{2}\)

\(FE=\dfrac{AB}{2}\)

Do đó: GH=FE

Xét tứ giác EFGH có

GH=FE

GH//FE

Do đó: EFGH là hình bình hành

2: AB=CD
mà AB=8cm

nên CD=8cm

Xét ΔADC có

G,F lần lượt là trung điểm của AD,AC

=>GF là đường trung bình của ΔADC

=>GF//DC và \(GF=\dfrac{DC}{2}=4cm\)

GF//DC

DC\(\perp\)AB

Do đó: GF\(\perp\)AB

Ta có: GF\(\perp\)AB

AB//GH

Do đó: GH\(\perp\)GF

Xét hình bình hành GHEF có GH\(\perp\)GF

nên GHEF là hình chữ nhật

=>\(S_{GHEF}=GH\cdot GF=\dfrac{AB}{2}\cdot\dfrac{CD}{2}=4\cdot4=16\left(cm^2\right)\)