K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

tôi chưa hok đến lp 8

30 tháng 7 2019

Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo!

17 tháng 9 2016

Áp dụng định lý 2 của đường trung bình trong hình thang

Có AB//CD => ABCD là hình thang. EF là đường trung bình của hình thang

Nên \(\text{EF}=\frac{CD+AB}{2}\) .

18 tháng 9 2016

Sai rồi vì EF đâu phải đường trung bình đâu, E là trung điểm BD, F là trung điểm AC và đề bài yêu cầu chứng minh EF=(CD-AB)/2 mà.

20 tháng 9 2019

A B C D E F P

*Chứng minh EF // AB // CD

Gọi P là trung điểm AD có ngay:PF // AB (2) (PF là đường trung bình tam giác DAB)

Lại có PE // DC(là đường trung bình tam giác ADC) và DC // AB nên PE // AB(2)

Từ (1) và (2) theo tiên đề Ơclit suy ra P, E, F thẳng hàng. Mà PF // AB -> FE // AB(3)

Lại có PE // DC -> FE // DC (4). Từ (3) và (4)  suy ra đpcm.

* Chứng minh EF = \(\frac{CD-AB}{2}=\frac{CD}{2}-\frac{AB}{2}\)

Do PE = 1/2 CD; PF = 1/2 AB và P, E, F thẳng hàng nên:

\(PF+FE=PE\Leftrightarrow\frac{1}{2}AB+FE=\frac{1}{2}CD\Leftrightarrow FE=\frac{CD-AB}{2}\)

=> đpcm

P/s: ko chắc.

20 tháng 9 2019

Sửa tí: 

"Có ngay PF // AB (1)"

Gọi M,N lần lượt là trung điểm của AD,BC

Xét hình thang ABCD có

M,N lần lượt là trung điểm của AD,BC

=>MN là đường trung bình

=>MN//AB//CD và MN=(AB+CD)/2

Xét ΔDAB có

M,E lần lượt là trung điểm của DA,DB

=>ME là đường trung bình

=>ME//AB và ME=AB/2

Xét ΔCBA có

F,N lần lượt là trung điểm của CA,CB 

=>FN là đường trung bình

=>FN//AB và FN=AB/2

ME//AB

MN//AB

ME cắt MN tại M

Do đó: M,E,N thẳng hàng

NF//AB

NM//AB

NM cắt NF tại N

Do đó: N,F,M thẳng hàng

=>M,E,F,N thẳng hàng

=>ME+EF+FN=MN

=>\(EF=\dfrac{1}{2}\left(CD+AB\right)-\dfrac{1}{2}AB-\dfrac{1}{2}AB=\dfrac{1}{2}\left(CD-AB\right)\)

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0