Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)
=> FK là đường trung bình của tam giác ACD
=> FK//AD
=> ADKF là hình thang
Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD
=> ME // AD mà FK//AD (cmt)
=> ME//FK (1)
Chứng minh tương tự ta cũng có:
MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC
=> MF//BC ; EK // BC
=> MF//EK (2)
Từ (1) và (2) ta có: EMFK là hình bình hành
Bài 5:
Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Bài 4:
2: Xét hình thang ABCD có
E,F lần lượt là trung điểm của AD,BC
=>EF là đường trung bình của hình thang ABCD
=>EF//AB//CD và \(EF=\dfrac{AB+CD}{2}\)
Gọi M,N,P lần lượt là trung điểm các cạnh BF,AF,AB
Áp dụng tính chất đường trung bình suy ra được:
K,N,M thẳng hàng (//BE)
J,P,M thẳng hàng (//FD)
I,P,N thẳng hàng (//CF)
Áp dụng định lý Menalaus vào ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN cho thấy:Khi và chỉ khi KN/KM×JM/JP×IP/IN=1 (*) thì suy ra đpcm.
Thật vậy:
KN/KM=AE/EB (1)
JM/JP=FD/AD (2)
IP/IN=BC/FC (3) (cái này là do tính chất đường trung bình đó bạn. Khi bạn biến đổi KN và KM thì lần lượt ra (1/2)×AE và (1/2)×BE. Khi lập tỉ số KN/KM thì bạn gạch bỏ 1/2 là ra AE/BE. Chứng minh tương tự với các tỉ số kia. Mình nhớ có một tính chất nói về cái này mà mình quên tên nó rồi hic.)
Áp dụng định lý Menalaus vào ∆ABF với các điểm C,D,E lần lượt thuộc phần kéo dài của các cạnh BF,AF,AB:
AE/EB×FD/AD×BC/FC=1 (4)
Từ (1),(2),(3) và (4) ==> KN/KM×JM/JP×IP/IN=1.
==>I,J,K thẳng hàng (theo định lý Menalaus trong ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN).
Vậy I,J,K thẳng hàng (đpcm).