Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông AMD và tam giác vuông CBN ta có :
\(\widehat{AMD}=\widehat{CNB}=90^o\) ( GT )
\(AD=CB\)( Vì ABCD là hình bình hành )
\(\widehat{ADM}=\widehat{CBN}=60^o\) ( góc đối của hình bình hành ABCD )
Do đó : \(\Delta AMD=\Delta CBN\)( cạnh huyền - góc nhọn )
\(\Rightarrow\hept{\begin{cases}AM=CN\\DM=NB\end{cases}}\)( các cặp cạnh tương ứng )
\(\Rightarrow\hept{\begin{cases}AM=CN\\AN=CM\end{cases}}\) ( vì AB=CD )
=> ANCM là hình bình hành
Xét hình bình hành ANCM ta có :
góc AMC=90 độ
=> AMCN là hình chữ nhật . ( dấu hiệu nhận biết 3 )
b) Ta có O là điểm giao hai đường chéo AC và BD của hình bình hành ABCD .
=> O là trung điểm của AC và BD . (1)
Và ANCM là hình bình hành ( câu a )
=> O là giao điểm của hai đường chéo AC và MN
=> O cũng là trung điểm của MN (2)
Từ (1) và (2)
=> AC , BD và MN đồng quy tại điểm O ( đpcm)
1.
trên tia đối tia CD lấy điểm H sao cho AC=CH.Nối BH
=> TAM GIÁC ABC=HBC(c.g.c)
=> AB=BH => AB+BD=HB+BD
AC=CH => AC+CD=HC+CD
Tam giác DBH có BD+BH>DH ( bất đẳng thức tam giác)
=> đpcm
2.
góc C = 80 độ
tam giác BMC cóCB=CM nên cân tại C
=>góc BMC=góc CBM=(180 - 80)/2=50