Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
Vì \(\Delta ABC\) cân tại B ( vì AB =BC)
=> Góc BAC = góc BCA (1)
Vì AC là phân giác góc A
=> góc BAC = góc CAD (2)
Từ (1) và (2) => góc BCA = góc CAD
Mà 2 góc này ở vị trí so le trong
=> AD // BC
=> ABCD là hình thang
Vậy ________________
Bài giải:
Ta có AB = BC (gt)
Suy ra ∆ABC cân
Nên ˆA1=ˆC1A1^=C1^ (1)
Lại có ˆA1=ˆA2A1^=A2^ (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra ˆC1=ˆA2C1^=A2^
nên BC // AD (do ˆC1,ˆA2C1^,A2^ ở vị trí so le trong)
Vậy ABCD là hình thang
Ta có AB = BC (gt)
Suy ra: ∆ABC cân.
Nên \(\widehat{A_1}=\widehat{C_1}\) (1)
Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)
nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)
Vậy ABCD là hình thang.
Xét tam giác ABC có AB = BC => ABC là tam giác cân
=> góc BAC = góc BCA Mà góc BAC = góc DAC (do AC là tia phân giác của góc A)
Nên góc CAD = góc BCA => BC // AD (so le trong) => ABCD là hình thang
Vậy...
tam giác ABC cân tại B ( vì AB =BC)
=> Góc BAC = góc BCA (1)
+) AC là phân giác góc A
=> góc BAC = góc CAD(2)
từ (1)(2) => góc BCA = góc CAD
=> AD // BC
=> tứ giác ABCD là hình thang
Tự vẽ hình
Tâ có: AB=BC (gt)
=> t/g ABC cân tại A
=> góc BAC = góc BCA
Mà góc BAC = góc CAD (AC là tia p/g của góc A)
=>góc CAD = góc BCA
Mà góc CAD và góc BCA là 2 góc ở vị trí so le trong
=> AB // CD
=> ABCD là hình thang
A B C D 1 2
Theo bài , ta có :
\(+AB=BC\Rightarrow\Delta ABC\)cân tại B
\(\Rightarrow\widehat{A_1}=\widehat{C_1}\left(1\right)\)
+ AC là tia phân giác góc A
\(\Rightarrow\widehat{A_2}=\widehat{A_1}\left(2\right)\)
Từ (1)(2) , suy ra : \(\widehat{A_2}=\widehat{C_1}\left(=\widehat{A_1}\right)\)
Mà hai góc này ở vị trí so le trong
=> AD // BC
Vậy ABCD là hình thang (đpcm)