Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{CDB}\) là góc nội tiếp chắn cung CB
mà \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CB}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
=>\(\widehat{ABD}=\widehat{ADB}\)
=>\(\widehat{ABD}=\widehat{BDC}\)
hay AB//CD
=>ABCD là hình thang
mà ABCD là tứ giác nội tiếp
nên ABCD là hình thang cân
Bài 1:
Giải: Vì AB // CD
=> A + D =180o
mà A = 3D => 3D + D = 180o
=> 4D = 180o
=> D = 45o => A = 135o
Ta có: AB // CD => B + C = 180o
mà B - C = 30o hay B = C + 30o
=> C + 30o + C = 180o
=> 2C = 150o => C = 75o => B = 105o
Bài 1:
Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{A} + \widehat{D} = 180^0\) (kề bù)
mà \(\widehat{A} = 3 \widehat{D}\) (gt)
\(\Rightarrow\)\(\widehat{D} = 45^0\) và \(\widehat{A} = 135^0\)
Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{B} + \widehat{C} = 180^0\) (kề bù)
mà \(\widehat{B} - \widehat{C} = 30^0\) (gt)
\(\Rightarrow\)\(2 \widehat{B} = 210^0\)
\(\Rightarrow\)\(\widehat{B} = 105^0\)
\(\Rightarrow\)\(\widehat{C} = 75^0\)
Vậy.......
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
Để có giá trị nhỏ nhất, số x phải là số bé nhất
Nếu là 0: 0 không nhân được với 0 (0^2)
Nếu là 1: Đáp ứng điều kiện
Phép tính trên (sau khi tính) có giá trị là 12 (1 + 1 + 10)
Đáp số: 12
x2 + 5x + 10
= x2 + 2.x. \(\frac{5}{2}\)+ \(\frac{25}{4}\) - 3,75
= ( x + \(\frac{5}{2}\))2 - 3,75 >_ -3,75
Vậy min A = - 3,75 khi x + \(\frac{5}{2}\) = 0
=> x = \(\frac{-5}{2}\)
Có: \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\) (BC là cạnh chung)
\(\Rightarrow\Delta DBC=\Delta ECB\)
\(\Rightarrow\) AE//AB = AD//AC
\(\Rightarrow\) ED//BC
Từ a) có: \(\widehat{EDB}=\widehat{DBC}\) (so le trong)
\(\widehat{DBC}=\widehat{EBD}\) (BD là tia phân giác)
\(\Rightarrow\widehat{EDB}=\widehat{DBC}=\widehat{EBD}\)
\(\Rightarrow\Delta BED\) cân tại E
\(\Rightarrow BE=ED\)
AI cắt ED tại J', ta cm J' ≡ J
Từ tính chất tam giác đồng dạng ta có:
EJ'/BI = AE/AB = ED/BC = ED/2BI
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J
Vậy A,I,J thẳng hàng
*OI cắt ED tại J" ta cm J" ≡ J
hiễn nhiên ta có:
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC)
mặt khác:
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh)
=> tgiác J"DO đồng dạng với tgiác IBO
=> J"D/IB = OD/OB = ED/BC = ED/ 2IB
=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J
Tóm lại A,I,O,J thẳng hàng