K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Giup ^_^ 

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
26 tháng 12 2015

a) Hình thang cân ABCD, có:

AB // CD; AD = BC

Xét hình tam giác ACB, có:

I là trung điểm BC (gt)

Q là trung điểm AC (gt)

=> IQ là đường trung bình tam giác ACB

=> IQ // AB

mà AB // CD (cmt)

=> IQ // CD

Xét tam giác ACD, có:

Q là trung điểm AC 9gt)

P là trung điểm CD (gt)

=> QP là đường trung bình tam giác ACD

=> QP = 1/2 AD

mà AD = BC (I là trung điểm BC)

=> IB = IC = QP

Xét tứ giác QIPC, có:

QI // PC (cmt)

=> tứ giác QIPC là hình thang

có: QP = IC (cmt)

=> tứ giác QIPC là hình thang cân (đpcm)

b) Xét tam giác ABC, có:

QI là đường trung bình tam giác ABC (cmt)

=> tam giác CQI = 1/2 tam giác ABC

=> SQIC = 1/2 SABC

Cmtt: SCPQ = 1/2 SACD

mà mình thấy kì kì cái câu này theo mình là = 1/2 chứ sao = 1/4 (theo mình thôi nha)

c) Xét tam giác ABC, có:

M là trung điểm AB (gt)

Q là trung điểm AC (gt)

=> MQ là đường trung bình

=> MQ // BC

MQ = 1/2 BC

cmtt: MN // AD; MN = 1/2 AD

NP = 1/2; NP // BC

PQ // AD; QP = 1/2 AD

Xét tú giác MNPQ, có:

MQ // NP (cùng // BC)

MN // QP (cùng //AD)

=> MNPQ là hình bình hành

có: MQ = NP = 1/2 BC

=> MNPQ là hình thoi (đpcm)

p/s: có chỗ nào không hiểu thì inb hỏi nha ~

13 tháng 9 2020

Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.

Bài 3:

a) Xét tam giác AOB: \(OB>AB-AO\)

Xét tam giác DOC: \(OD>DC-OC\)

Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)

b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:

\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)

Bài 4: 

a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:

\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)

b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà

Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:

\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)

Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)

Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)

11 tháng 4 2018

Ta có: Δ BAD ∼ Δ DBC

⇒ A B D ^   =   B D C ^  nên AB//CD

⇒ ABCD là hình thang.

22 tháng 9 2019

24 tháng 2 2017

Chung minh ABD đồng dạng với BDC

=> \(\widehat{ABD}\)=\(\widehat{BDC}\)

hai góc này ở vị trí sole trong

=> AB//CD