Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(O\)là giao điểm của \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OC+OD>CD\)
\(\Rightarrow AB+CD< OA+OB+OC+OD=AC+BD\)
mà \(AB+BD\le AC+CD\)
suy ra \(2AB+CD+BD< 2AC+BD+CD\)
\(\Leftrightarrow AB< AC\).
Đề phải là chứng minh \(AB< AC\) chứ bạn.
Gọi O là giao điểm của 2 đường chéo \(AC\) và \(BD.\)
Xét \(\Delta AOB\) có:
\(AB< AO+OB\) (theo bất đẳng thức trong tam giác) (1)
Xét \(\Delta OCD\) có:
\(CD< CO+OD\) (như ở trên) (2)
Cộng từng vế của (1) và (2) ta được:
\(AB+CD< \left(AO+CO\right)+\left(OB+OD\right)\)
\(\Rightarrow AB+CD< AC+BD\) (3)
Mà \(AB+BD\le AC+CD\left(gt\right)\) (4)
Từ (3) và (4) \(\Rightarrow AB< AC\left(đpcm\right).\)
Chúc bạn học tốt!
sao hả bạn bạn biết thì trả lời giúp mình còn ko thì đừng hỏi vớ vẩn nhé