K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

a) Gọi \(N=DK\cap AC;M=DJ\cap BC\).

Ta có \(\left(DJK\right)\cap\left(ABC\right)=MN\Rightarrow MN\subset\left(ABC\right)\)

\(L=\left(ABC\right)\cap JK\) nên dễ thấy \(L=JK\cap MN\)

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

19 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi N = DK ∩ AC; M = DJ ∩ BC.

Ta có (DJK) ∩ (ABC) = MN ⇒ MN ⊂ (ABC).

Vì L = (ABC) ∩ JK nên dễ thấy L = JK ∩ MN.

b) Ta có I là một điểm chung của (ABC) và (IJK).

Mặt khác vì L = MN ∩ JK mà MN ⊂ (ABC) và JK ⊂ (IJK) nên L là điểm chung thứ hai của (ABC) và (IJK), suy ra (IJK) ∩ (ABC) = IL.

Gọi E = IL ∩ AC; F = EK ∩ CD. Lí luận tương tự ta có EF = (IJK) ∩ (ACD).

Nối FJ cắt BD tại P; P là một giao điểm (IJK) và (BCD).

Ta có PF = (IJK) ∩ (BCD) Và IP = (ABD) ∩ (IJK)

7 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Nhận xét:

Do giả thiết cho IJ không song song với CD và chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.

Gọi K = IJ ∩ CD.

Ta có: M là điểm chung thứ nhất của (ACD) và (IJM);

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (MIJ) ∩ (ACD) = MK

b) Với L = JN ∩ AB ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)

Gọi P = JL ∩ AD, Q = PM ∩ AC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên Q là điểm chung thứ hai của (MNJ) và (ABC)

Vậy LQ = (ABC) ∩ (MNJ).

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

10 tháng 5 2018

Đáp án D

Trong tam giác BCD có: P là trọng tâm, N là trung điểm BC . Suy ra N , P , D thẳng hàng.

Vậy thiết diện là tam giác MND .

Xét tam giác MND , ta có 

Do đó tam giác MND cân tại D .

Gọi H là trung điểm MN suy ra DH  ⊥ MN

Diện tích tam giác 

5 tháng 11 2016

đăng nhìu thế