Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a) Ta có: M là trọng tâm của tam giác BCD
Nên M nằm trên trung tuyến BI (1)
Ta có: N là trọng tâm của tam giác ACD
Nên N nằm trên trung tuyến AI (2)
Từ (1) và (2) suy ra M và N thuộc mp (ABI)
b) Gọi H, K lần lượt là trung điểm của AG, BG
Ta có: HK // AB
AB // MN
Suy ra MN // HK
Theo định lý Ta-let, ta có: \(\frac{{GM}}{{GH}} = \frac{{GN}}{{GK}} = \frac{{MN}}{{HK}}(1)\)
Ta có:\(\frac{{HK}}{{AB}} = \frac{1}{2},\frac{{MN}}{{AB}} = \frac{1}{3}\)
Do đó \(\frac{{MN}}{{AB}}:\frac{{HK}}{{AB}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{HK}} = \frac{2}{3}(2)\)
Từ (1) và (2) suy ra\(\frac{{GM}}{{GH}} = \frac{2}{3}GH = \frac{1}{2}GA \Rightarrow \frac{{GM}}{{\frac{1}{2}GA}} = \frac{2}{3} \Rightarrow \frac{{GM}}{{GA}} = \frac{1}{3}\)
Chứng minh tương tự ta được\(\frac{{GN}}{{GB}} = \frac{1}{3}\)
c) Gọi H, K lần lượt là trung điểm của BC, BD
Tam giác AHD có:\(\frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)
Suy ra: QM // AD
Do đó, tam giác QGM đồng dạng với tam giác DGA
Nên D, G, Q thẳng hàng
Ta có: QM // AD nên \(\frac{{QM}}{{AD}} = \frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)
Mà \(\frac{{QM}}{{AD}} = \frac{{QG}}{{GD}}\)
Do đó:\(\frac{{QG}}{{GD}} = \frac{1}{3}\)
Chứng minh tương tự ta được\(\frac{{GP}}{{GC}} = \frac{1}{3}\)
Suy ra điều cần chứng minh.
Đặt \(AB=AC=AD=x\)
Do \(\widehat{BAC}=60^0\Rightarrow\Delta ABC\) đều \(\Rightarrow BC=x\)
Tương tự tam giác ABD đều \(\Rightarrow BD=x\)
\(\Rightarrow\Delta BCD\) cân tại B
Gọi H là hình chiếu vuông góc của A lên (BCD)
Do \(AB=AC=AD\Rightarrow HA=HB=HC\)
\(\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác
Mà BCD cân tại B \(\Rightarrow BH\perp CD\Rightarrow CD\perp\left(AHB\right)\Rightarrow CD\perp AB\)
b/Từ câu a, do N là trung điểm CD nên N là giao điểm của BH và CD
\(\Rightarrow MN\in\left(ABH\right)\Rightarrow CD\perp MN\)
Lại có: \(\Delta DBC=\Delta DAC\) (c.c.c)
\(\Rightarrow BN=AN\)
\(\Rightarrow\Delta ABN\) cân tại N \(\Rightarrow MN\perp AB\) (trong tam giác cân trung tuyến là đường cao)
Ta có N là trung điểm của BC
Suy ra A B → + A C → = 2 A N →
Lại có: A D → = 2 A Q → (Q là trung điểm của AD)
Do đó A B → + A C → + A D → = 2 A N → + 2 A Q → = 2 A N → + A Q → (1)
Tạ lại có G là trọng tâm của tứ diện ABCD nên G là trung điểm của NQ (tính chất trọng tâm của tứ diện) ⇒ A N → + A Q → = 2 A G → (2)
Từ (1) và (2) suy ra A B → + A C → + A D → = 4 A G → .
Đáp án A
Vậy thì áp dụng định lý hàm cos:
\(cos\widehat{MIN}=\frac{IM^2+IN^2-MN^2}{2IM.IN}=\frac{a^2+2a^2-5a^2}{2.a.a\sqrt{2}}=-\frac{\sqrt{2}}{2}\)
\(\Rightarrow\widehat{MIN}=135^0\Rightarrow\) góc giữa AB và CD là \(180^0-135^0=45^0\)
Trùm Trường
IM là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}IM=\frac{AB}{2}=a\\IM//AB\end{matrix}\right.\)
IN là đường trung bình tam giác ACD \(\Rightarrow\left\{{}\begin{matrix}IN=\frac{CD}{2}=a\sqrt{2}\\IN//CD\end{matrix}\right.\)
\(\Rightarrow\) Góc giữa AB và CD bằng góc nhọn giữa IN và IM
Đến đây thì nhận ra là đề thiếu dữ kiện để tính, chỉ có chừng này dữ kiện ko thể tính được góc giữa 2 đường thẳng AB và CD. Chắc bạn ghi thiếu đề
Điều kiện GM = GN mới chứng tỏ điểm G nằm trên mặt phẳng trung trực của đoạn thẳng MN.
Đáp án A