Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S = 1 +21+22+........+22017
2S= 2 +22+23+.......+22018
2S -S =( 2+22+23+......+22018) - (1+2+22+.......+22017)
S = 22018-1
S =22018- 1
S = 22 . 22016-1
\(\Rightarrow\)S < 5. 22016
Ta có :S= 1+ 2 + 22 + ........+ 22017
Suy ra 2S = 2 + 22 +.......+22018
Suy ra 2S -S = (2-2) + (22-22)+......+(22018 - 1)
Suy ra S=22018-1
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Bài làm :
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
`Answer:`
\(T=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T=2+\frac{3}{2}+\frac{4}{2^2}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{3}{2}-\frac{2}{2}\right)+\left(\frac{4}{2^2}-\frac{4}{2^2}\right)+...+\left(\frac{2017}{2^{2015}}-\frac{2016}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
Ta đặt \(V=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow T=2+V-\frac{2017}{2^{2016}}\text{(*)}\)
\(\Leftrightarrow2V=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)
\(\Leftrightarrow2V-V=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)
\(\Leftrightarrow2V-V=1-\frac{1}{2^{2015}}\text{(**)}\)
Từ (*)(**)\(\Rightarrow T=2+\left(1-\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow T=3-\frac{1}{2^{2015}}-\frac{2017}{2^{2016}}\)
`=>T<3`
a) S= 1+2+22+...+29
2S=2+22+23+...+210
2S-S=(2+22+23+...+210)-(1+2+23+...+29)
S=210-1
5.28=2.2+1.28=1+22.28=1+210
=>S=5.28
b) A=1+2+22+....+2100
2A=2+22+23+...+2101
2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
A=2101-1
=> A<2101
S=1+2+22+23+...+22017
2S=2+22+23+24+...+22018
2S-S=(2+22+23+24+...+22018) - (1+2+22+23+...+22017)
S=22018-1
S=22016.22-1
22016.4<5.22016(vì 4<5)
=>22016.22-1<5.22016
S<22016 nhé bạn đảm bảo đúng nhớ tk mình nhé