Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...+\frac{1}{100.199.201}\)
\(S=\frac{1}{3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+\frac{2}{8.7.9}+...+\frac{2}{200.199.201}\)
Ta có: \(\frac{2}{3.4.5}< \frac{2}{3.5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{199.201}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{199}-\frac{1}{201}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{201}\)
\(\Rightarrow S< \frac{2}{3}-\frac{1}{201}< \frac{2}{3}\)
\(\Rightarrow S< \frac{2}{3}\)
Chúc học tốt.
Ta có: 1/1500 = 1/1500
1/1001 > 1/1500
1/1002 > 1/1500
1/1003 > 1/1500 => 1/1001 + 1/1002 + 1/1003 + ... + 1/1499
. . . . . . . . . . . > 1/1500 + 1/1500 + 1/1500 + ... + 1/1500 (499 số hạng 1/1500)
1/1499 > 1/1500 > 499/1500
=> 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 499/1500 + 1/1500 = 500/1500 = 1/3
Vậy 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 1/3
k cho mình nha! Cảm ơn!
a) để 5/n-1 là số nguyên thì 5 chia hết cho n-1
=> n-1 thuộc Ư(5)=( 1, -1, 5, -5)
ta có
n-1=1=>n=2
n-1=-1=>n=0
n-1=5=>n=6
n-1=-5=>n=-4
mà n là số tự nhiên => n thuộc 2,0,6
máy mik bị lỗi bàn phím nên phải gõ ngoặc khác thay thế TvT, sorry nghen
b) M=(1-1000/2016) *...*(1-2016/2016)*(1-2017/2016)
=>M=(1-1000/2016)*.....*0*(1-2017/2016)
=>M=0