K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2023

1. Cho đa thức sau: \(A=7x^3-5x+6+2x^4\). Tìm các đa thức B, C sao cho:

\(A+B=6x^5+3-7x+6x^3\)

\(A-C=2x^4\)

 

2. Tìm tổng các đa thức sau:

\(a,3x^4+2x+6x^2-2x-1\)

\(b,-5x^4-3x^2+4x^3-2x-1\)

\(c,-x^5+3x^2-1\)

 

3. Tìm hiệu các đa thức sau:

\(a,2x^3-x^2+1,5\)

\(b,4x^6-x^5+3x-2\)

\(c,-6x^3-3x+x^2-4\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Cộng hai đa thức:

Để cộng hai đa thức một biến (theo cột dọc), ta có thể làm như sau:

-        Thu gọn mỗi đa thức và sắp xếp hai đa thức đó cùng theo số mũ giảm dần (hoặc tăng dần) của biến;

-        Đặt hai đơn thức có cùng số mũ của biến ở cùng cột;

-        Cộng hai đơn thức trong từng cột, ta có tổng cần tìm.

Để cộng hai đa thức một biến (theo hàng ngang), ta có thể làm như sau:

-        Thu gọn mỗi đa thức và sắp xếp hai đa thức đó cùng theo số mũ giảm dần (hoặc tăng dần) của biến;

-        Viết tổng hai đơn thức theo hàng ngang;

-        Nhóm các đơn thức có cùng số mũ của biến với nhau;

-        Thực hiện phép tính trong từng nhóm, ta được tổng cần tìm.

b) Trừ hai đa thức:

Để trừ đa thức P(x) cho đa thức Q(x) (theo cột dọc), ta có thể làm như sau:

-        Thu gọn mỗi đa thức và sắp xếp hai đa thức đó cùng theo số mũ giảm dần (hoặc tăng dần) của biến;

-        Đặt hai đơn thức có cùng số mũ của biến ở cùng cột sao cho đơn thức P(x) ở trên và đơn thức của Q(x) ở dưới;

-        Trừ hai đơn thức trong từng cột, ta có hiệu cần tìm.

Để trừ đa thức P(x) cho đa thức Q(x) (theo hàng ngang), ta có thể làm như sau:

-        Thu gọn mỗi đa thức và sắp xếp hai đa thức đó cùng theo số mũ giảm dần (hoặc tăng dần) của biến;

-        Viết hiệu P(x) – Q(x) theo hàng ngang, trong đó đa thức Q(x) được đặt trong dấu ngoặc;

-        Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức trong dạng thu gọn của đa thức Q(x), nhóm các đơn thức có cùng số mũ của biến với nhau;

-        Thực hiện phép tính trong từng nhóm, ta được hiệu cần tìm.

a: P(x)=2x^4+5x^3-2x^2+4x^2-x^4-4x^3+2-x^4

=(2x^4-x^4-x^4)+(5x^3-4x^3)+(-2x^2+4x^2)+2

=x^3+2x^2+2

b: P(1)=1+2+2=5

6 tháng 6 2019

Tập hợp các số hữu tỉ âm: phép trừ, nhân và chia không phải luôn luôn thực hiện được

Ví dụ: (-1/3) - (-3/4) kết quả không phải là số hữu tỉ âm

24 tháng 2 2019

Tập hợp các số hữu tỉ dương : phép trừ không phải luôn thực hiện được

Ví dụ: (1/3) - (3/4) kết quả không phải là số hữu tỉ dương

9 tháng 6 2017

a) Phép cộng và phép trừ

b) Phép trừ

c) Phép trừ, phép nhân và phép chia

20 tháng 9 2018

a) Tập hợp các số hữu tỉ khác 0 tất cả các phép cộng, trừ, nhân , chia luôn thực hiện được

b) Tập hợp các số hữu tỉ dương : phép trừ không phải luôn thực hiện được

Ví dụ: (1/3) - (3/4) kết quả không phải là số hữu tỉ dương

c) Tập hợp các số hữu tỉ âm: phép trừ, nhân và chia không phải luôn luôn thực hiện được

Ví dụ: (-1/3) - (-3/4) kết quả không phải là số hữu tỉ âm

15 tháng 6 2017

 b, Tập hợp các số hữu tỉ dương: 
* Trừ: 1/1 - 111111/2356 = - 46,16086587 (*) 
* Cộng: 1/1 + 111111/2356 = 48,16086587 (*) 
* Chia: 123 : 456 = 0,269736842 (*) 
c, Tập hợp các số hữu tỉ âm: 
* Trừ: -1/1 - (-111111/2356) = 46,16086587 (*) 
* Cộng: -1/1 + (-111111/2356) = - 48,16086587 (*) 
* Chia: -123 : (-456) = 0,269736842 (*) 
a, Tập hợp các số hữu tỉ khác 0 gồm tập hợp các số hữu tỉ dương và âm: 
* Trừ, cộng, chia: VD ở trên

26 tháng 4 2018

trước các hạng tử có dấu gì thì đó chính là dấu của hạng từ

nếu hạng tử đầu tiên của đa thức không có dấu đằng trước, ta ngầm hiểu hạng tử đó mang dấu dương

quy tắc đổi dấu: khi cộng 2 đa thức thì giữ nguyên dấu các hạng tử của cả 2 đa thức và thực hiện cộng các đa thức cùng phần biến

khi trừ 2 đa thức thì giữ nguyên dấu các hạng tử của đa thức bị trừ, còn lại đổi dấu tất cả các hạng tử của đa thức trừ sau khi bỏ dấu ngoặc

thế này được chưa bạnhihihihihihi

5 tháng 12 2017

Tập hợp các số hữu tỉ khác 0 tất cả các phép cộng, trừ, nhân , chia luôn thực hiện được

25 tháng 3 2018

Để cộng, trừ hai đa thức một biến, ta có thể thực hiện theo một trong hai cách sau:

Cách 1. Thực hiện theo cách cộng, trừ đa thức đã học ở Tiết 6.

Cách 2. Sắp xếp các hạng tử của hai đa thức cùng theo lũy thừa giảm (hoặc tăng) của biến, rồi đặt phép tính theo cột dọc tương tự như cộng, trừ các số (chú ý đặt các đơn thức đồng dạng ở cùng một cột).

25 tháng 3 2018

Cách 1. Thực hiện theo cách cộng, trừ đa thức đã học ở Tiết 6.

Cách 2. Sắp xếp các hạng tử của hai đa thức cùng theo lũy thừa giảm (hoặc tăng) của biến, rồi đặt phép tính theo cột dọc tương tự như cộng, trừ các số (chú ý đặt các đơn thức đồng dạng ở cùng một cột).



Xem thêm tại: http://loigiaihay.com/ly-thuyet-cong-tru-da-thuc-mot-bien-c42a6556.html#ixzz5AkptYOsw