Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có thể chứng minh :
Ta có:
2a+13/b3a−7b=2c+13d/3c−7d
=> 2a+13b/2c+13d=3a−7b/3c−7d
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2a+13b/2c+13d=3a−7b/3c−7d=2a+13b+3a−7b/2c+13d+3c−7d=5a+6b5c+6d
Từ 5a+6b/5c+6d = > 5a/5c=6b/6d
<=> a/c=b/d
Hay: a/b=c/d (đpcm)
Gọi \(\frac{a}{b}=\frac{c}{d}=x\Rightarrow a=bx;c=dx\)
Thay vào vế trái ta được
\(\frac{3a-5c}{4a+7c}=\frac{3.bx-5.dx}{4.bx+7.dx}=\frac{x\left(3b-5d\right)}{x\left(4b+7d\right)}=\frac{3b-5d}{4b+7d}\)
Vậy vế trái bằng vế phải
Ta có:\(\frac{a}{b}=\frac{c}{d}=\frac{3a-5c}{3b-5d}\left(1\right)\)
Ta lại có:\(\frac{a}{b}=\frac{c}{d}=>\frac{4a+7c}{4b+7d}\left(2\right)\)
Từ (1) và (2),suy ra : \(\frac{3a-5c}{4a+7c}=\frac{3b-5d}{4b+7d}\)
Cách của mình cũng đúng nhưng khác cách làm của thang Tam thôi