Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}=\dfrac{2b}{2b}=1\)\(\Rightarrow\dfrac{a+b+c}{a+b-c}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow a+b+c-a-b+c=0\)
\(\Rightarrow2c=0\)
\(\Rightarrow c=0\) (đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+b}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}=\dfrac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow c=-c\)
\(\Rightarrow c-\left(-c\right)=0\)
\(\Rightarrow c+c=0\)
\(\Rightarrow2c=0\)
\(\Rightarrow c=0\)
\(\Rightarrow\) Đpcm.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
=> Ta có: \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) (1)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\) (2)
Từ (1) và (2) => \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) ( đpcm)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left[{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)
Thay (1) vào đề bài:
\(VT=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)
\(VP=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
Khi đó: \(VT=VP\)
hay \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Vậy \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) khi \(\left[{}\begin{matrix}a,b,c,d\ne0\\a\ne b;c\ne d\end{matrix}\right.\).
a) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\)
Ta có:
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\left(đpcm\right)\)
b) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\)
\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\left(1\right)\)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\left(đpcm\right)\)
a/ đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\)(1)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\)(2)
từ (1);(2) nên \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=> a = b.k ; c = d.k
Ta lại có : \(\dfrac{a-b}{a+b}=\dfrac{b.k-b}{b.k+b}=\dfrac{b.\left(k-1\right)}{b.\left(k+1\right)}=\dfrac{k-1}{k+1}\)
\(\dfrac{c-d}{c+d}=\dfrac{d.k-d}{d.k+d}=\dfrac{d.\left(k-1\right)}{d.\left(k+1\right)}=\dfrac{k-1}{k+1}\)
Vì \(\dfrac{a-b}{a+b}=\dfrac{k-1}{k+1}\) ; \(\dfrac{c-d}{c+d}=\dfrac{k-1}{k+1}\) nên \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
Vậy \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
Cách 1:
Ta xét tích a(c-d) và c(a-b)
Ta có: a(c-d)=ac-ad (1)
c(a-b)=ac-bc(2)
Ta lại có \(\dfrac{a}{c}=\dfrac{c}{d}\)=>ad=bc (3)
Từ (1), (2), (3) ta có a(c-d)=c(a-d). Do đó \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 2:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k thì a=bk, c=dk.
Xét \(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
Xét \(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 3: Ta có
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Aps dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a-b}{c-d}\)
=>\(\dfrac{a}{c}=\dfrac{a-b}{c-d}=>\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
hay \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
a, ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)
áp dụng tính chất dă y tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)
\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)
b, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)
áp dụng tính chất dă tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)
\(\Rightarrow ab\left(b+c\right)=bc\left(a+b\right)\)
\(\Rightarrow ab^2+abc=abc+b^2c\)
\(\Rightarrow ab^2=b^2c\)
\(\Rightarrow a=c\)
Đến đây ko còn manh mối :v
theo bài ra ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\dfrac{2b}{2b}=1\) \(\Rightarrow a+b+c=a+b-c\\ \Rightarrow a+b+c+c=a+b\\ \Rightarrow a+b+2c=a+b\\ \Rightarrow2c=0\\ \Rightarrow c=0\left(đpcm\right)\)