K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

14 tháng 6 2017

\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{10a+b}{10b+c}=\frac{b}{c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow\frac{b^2}{c^2}=\frac{a^2}{b^2}\)

Áp dụng tính chất thêm một lần nữa , ta có :

\(\frac{b^2}{c^2}=\frac{a^2}{b^2}=\frac{b^2+a^2}{c^2+b^2}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{b^2}{c^2}=\frac{b}{c}.\frac{a}{b}=\frac{a}{c}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

25 tháng 11 2018

\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

        \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)

\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)

11 tháng 12 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{10a+b}{10b+c}=\frac{10a}{10b}=\frac{b}{c}=\frac{a}{b}\)

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow ac=b^2\left(đpcm\right)\)

Vậy \(ac=b^2\)

 

 

11 tháng 12 2016

\(\frac{ab}{bc}=\frac{b}{c}\) => \(abc=bcb\) => \(abc=cb^2\)

=> \(acb=cb^2\) => \(ac=b^2\) (\(đpcm\))

20 tháng 7 2017

ta có : ab/bc=a.b/b.c=a/c <=> abbbb..b/bbb.bc=a.b.b.....b/b.b.b....b.c=a/c

NV
29 tháng 9 2019

\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)

- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)

- Nếu a; b đều khác 0

\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)

Bài 2 tương tự

\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)

\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó

Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?

27 tháng 9 2019

Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền

23 tháng 5 2019

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)  hay \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\left(10a+b\right)\left(b+c\right)=\left(a+b\right)\left(10b+c\right)\)

\(10ab+b^2+10ac+bc=10ab+10b^2+ac+bc\)

\(9ac=9b^2\)

\(ac=b^2\)

\(\frac{a}{b}=\frac{b}{c}\)

23 tháng 5 2019

\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)=\(1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\frac{9a}{a+b}=\frac{9b}{b+c}=>\frac{9a}{9b}=\frac{a+b}{b+c}\)

\(\frac{a}{b}=\frac{a+b}{b+c}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)

=>\(\frac{a}{b}=\frac{b}{c}\)

nếu đúng thì k nka