Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Lại có: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)
Tương tự: \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\)
=> đpcm
đặt a=bk;c=dk
ta có:\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2\times k^2-b^2}{d^2\times k^2-d^2}=\frac{b^2\times\left(k^2-1\right)}{d^2\times\left(k^2-1\right)}=\frac{b^2}{d^2}\) (thêm dấu giá trị tuyệt đối đến hếtvế này)
ta có: \(\frac{ab}{cd}=\frac{bk\times b}{dk\times d}=\frac{b\times\left(k-1\right)}{d\times\left(k-1\right)}=\frac{b}{d}\)
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow\left(a^2cd-abd^2\right)+\left(b^2cd-abc^2\right)=0\)
\(\Leftrightarrow ad\left(ac-bd\right)-bc\left(ac-bd\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\) (đpcm)
a
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
b
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
c
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{5a^2}{5b^2}=\frac{3c^2}{3d^2}=\frac{5a^2+3c^2}{3d^2+5b^2}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)
mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=kd\left(3\right)\)
Ta có:\(\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)
\(\frac{c^2-d^2}{cd}=\frac{k^2d^2-d^2}{d^2k}=\frac{k^2-1}{k}\left(2\right)\)
Từ (1) và (2) suy ra:đpcm
b)\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
Từ (3) ta được:\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{b^2k^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2\left(k^2+1\right)}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(4\right)\)
\(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{d^2k^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2\left(k^2+1\right)}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(5\right)\)
Từ (4) và (5) ta được đpcm
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)
a) Ta có:
\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1}\) (1)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
b) Ta có:
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) ,ta có:
\(a=bk,c=dk\)
\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) suy ra:
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)(đpcm)
Đặt \({a}/{b}={c}/{d}=k \) => a =bk ; c =dk
Thay vào vế trái là \({ab}/{cd}\) và vế phải là \({(a+b)^2}/{(c+d)^2}\) sẽ đc 2 vế bằng nhau
=> điều phải CM