Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{2+4+3}=\dfrac{180}{9}=20\)
=>a=20; b=80; c=60
Bài 3:
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\left(\dfrac{b}{d}\right)^2\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2-b^2}{c^2-d^2}\)
c: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dung tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
BÌnh phương các vế ta được:
\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)
\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(đpcm)
Cách 1:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)
Ta có:
\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{b.k+b}{d.k+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3=\frac{b^3}{d^3}\) (1)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(b.k\right)^3+b^3}{\left(d.k\right)^3+d^3}=\frac{b^3.k^3+b^3}{d^3.k^3+d^3}=\frac{b^3.\left(k^3+1\right)}{d^3.\left(k^3+1\right)}=\frac{b^3}{d^3}\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)