K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)

Th1:a+b+c+d=0=>\(\frac{a+b+c+d}{a+b+c+d}=\frac{0}{a+b+c+d}=0suyra\frac{a+b}{b+c}=\frac{c+d}{d+a}=0\)

Th2:a+b+c+d khác 0=>\(\frac{a+b+c+d}{a+b+c+d}=1\)suy ra\(\frac{a+b}{b+a}=\frac{c+d}{d+a}=1\)=>(a+b)(d+a)=(b+a)(c+d)=>a+d=c+d<=>a=c

Vậy a+b+c+d=0 hoặc a=c

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

15 tháng 3 2022

`Answer:`

a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)

\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)

\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)

Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`

25 tháng 8 2018

Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)= k  =>\(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có: \(\frac{a+b}{a-b}\)=\(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}\)=\(\frac{k+1}{k-1}\)(1)

         \(\frac{c+d}{c-d}\)=\(\frac{dk+d}{dk-d}\)=\(\frac{d\left(k+1\right)}{d\left(k-1\right)}\)=\(\frac{d+1}{d-1}\)(2)

Từ (1),(2)  =>\(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)

25 tháng 8 2018

Ý mình là nhầm, cậu đổi dấu giùm mình nha

Bạn tham khảo ở đây nha

http://olm.vn/hoi-dap/question/222914.html

2 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(VT=\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(VP=\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) ->đpcm

4 tháng 10 2015

a, a/b = c/d => a+b/c+d = a-b/c-d

=> a+b/a-b = c+d/c-d