Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo bài ra ta có:
$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$
$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$
Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$
$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:
$3x^2-y^2+z^2=876$
$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$
$\Rightarrow 219k^2=876$
$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$
Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$
Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$
a) Ta có: x và y là hai đại lượng tỉ lệ nghịch.
\(\Rightarrow\) x.y = a
\(\Rightarrow\) a = 8.15 =120
b) y = \(\frac{120}{x}\)
a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)
Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)
b, Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)
Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)