Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)
\(\Rightarrow\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)
\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
\(\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016bk-2017b}{2017dk+2018d}=\dfrac{b\left(2016k-2017\right)}{d\left(2017k+2018\right)}\)
\(\dfrac{2016c-2017d}{2017a+2018b}=\dfrac{2016dk-2017d}{2017bk+2018b}=\dfrac{d\left(2016k-2017\right)}{b\left(2017k+2018\right)}\)
\(\Rightarrow\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016c-2017d}{2017a+2018b}\)
\(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7bk^2+5bdk^2}{7bk^2-5bdk^2}=\dfrac{k^2\left(7b+5bd\right)}{k^2\left(7b-5bd\right)}=\dfrac{7b+5bd}{7b-5bd}\)
\(\dfrac{7b^2+5ab}{7b^2-5ab}=\dfrac{7b^2+5kb^2}{7b^2-5kb^2}=\dfrac{b^2\left(7+5k\right)}{b^2\left(7-5k\right)}=\dfrac{7+5k}{7-5k}\)
Hình như sai sai
Bài 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)
\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)
a/ Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có :
\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\)\(\left(1\right)\)
\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
b/ Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)
\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
a) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Từ \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) \(\Rightarrow\dfrac{c-d}{c+d}=\dfrac{a-b}{a+b}\)
b) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\)
Từ \(\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\) \(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
a) Ta co: a/b = c/d= k
=> a=bk
c=dk
Ta co: a-b/a+b = bk-b/bk+b = b(k-1)/b(k+1) = k-1/k+1 (1)
Ta co: c-d/c+d = dk-d/dk+d = d(k-1)/d(k+1) = k-1/k+1 (2)
Tu (1) va (2)
=> a-b/a+b=c-d/c+d
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)
a) Từ (*) ta có:
\(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\) (1)
\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\) (2)
Từ (1) và (2) suy ra \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b) Từ (*) ta có:
\(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{b\left(7k-4\right)}{b\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (3)
\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{d\left(7k-4\right)}{d\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (4)
Từ (3) và (4) suy ra \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
c) Từ (*) ta có:
\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (5)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (6)
\(\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}=\dfrac{\left[\left(dk\right)-\left(bk\right)\right]^2}{\left(d-b\right)^2}=\dfrac{\left[k\left(d-b\right)\right]^2}{\left(d-b\right)^2}=k^2\) (7)
Từ (5), (6) và (7) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}\)
1,
Giải:
a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\) (1)
\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
b, \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
\(\Rightarrowđpcm\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\)
\(\Rightarrow\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\)
\(\dfrac{k-1}{k}=\dfrac{k-1}{k}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\rightarrowđpcm\)
a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)
b;c;d tương tự hết
b: a/b=c/d
nên 3a/3b=2c/2d
=>a/b=c/d=(3a+2c)/(3b+2d)
c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)
d: a/c=b/d
nên 5a/5c=2b/2d
=>a/c=b/d=(5a-2b)/(5c-2d)
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
b) \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
\(\dfrac{a}{b}=\dfrac{7a}{7b}\\ \dfrac{c}{d}=\dfrac{5c}{5d}\Rightarrow\dfrac{a}{b}=\dfrac{7a}{7b}=\dfrac{5c}{5d}\Rightarrow\dfrac{7a}{7b}=\dfrac{5c}{5d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{7a}{7b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\)
Mà \(\dfrac{7a}{7b}=\dfrac{a}{b}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\Leftrightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\)
Vậy \(\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\left(đpcm\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow ad=bc\)
\(\Rightarrow5ad=5bc\)
\(\Rightarrow7ab+5ad=7ab+5bc\)
\(\Rightarrow a\left(7b+5d\right)=b\left(7a+5c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\rightarrowđpcm\)