K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

giả thiết không đủ, xin tiền bối coi lại cho vãn bối nhá

25 tháng 5 2017

đầu tiên bạn phải chứng minh bổ đề sau:

Trong 1 tam giác vuông, có 1 góc bằng 30 độ thì cạnh góc vuông đối diện với góc 30độ bằng nửa cạnh huyền "( tự chứng minh) gợi ý là vẽ thếm trung tuyến ứng với cạnh huyền để chứng minh.

Giải:
Kẻ BH ⊥ AC tại H.
Xét tam giác ABH có góc BHA = 90độ (cách kẻ)
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)
Áp dụng định lý Py-ta-go ta có:
AB² = BH² + AH²
=> BH² = AB² - AH² (2)
Xét tam giác BHC có góc BHC = 90độ (cách kẻ)
=> Áp dụng định lý Py-ta-go ta có:
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)
Thay (1) và (2) vào (3) ta có:
BC² = (AB² - AH²) + AC² - AB.AC + AH²
<=> BC² = AB² - AH² + AC² - AB.AC + AH
<=> BC² = AB² + AC² - AB.AC
Kết luận

25 tháng 5 2017

kẻ đường cao bh ( h thuộc ac)

xét tam giác bah có góc a =60

suy ra ah=1/2 ab

tám giác bah vuông tại h

suy ra ab^2=ah^2+bh^2 =. bh^2=ab^2-ah^2

tam giác bhc vuông tại h

suy ra bh^2 +hc^2=bc^2

=> bh^2+(ac-ah)^2=bc^2

<=> ab^2-ah^2+ ac^2 -2ah.ac +ah^2=bc^2

<=> ab^2+ac^2-2ah.ac=bc^2 mà ah=1/2ab

=> ab^2+ac^2-ab.ac =bc^2

25 tháng 5 2022

Vì \(BAC=60^o\Rightarrow ABH=30^o\Rightarrow AH=\dfrac{AB}{2}\left(1\right)\)

Áp dụng định lý Pytago ta có:

\(AB^2=AH^2+BH^2\) và \(BC^2=BH^2+HC^2\)

\(\Rightarrow BC^2=AB^2-AH^2+AC^2-2.AC.AH+AH^2\)

\(\Rightarrow BC^2=AB^2+AC^2-2AH.AC\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđfcm\)

25 tháng 5 2022

ũa cái đề sai mè vẫn làm đc hẻ?

22 tháng 3 2020

A B C H

kẻ BH _|_ AC

xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)

^BAH = 60 (Gt)

=> ^ABH = 30; xét tam giác ABH vuông tại H

=> AH = AB/2 (đl)

=> AB = 2AH                  (1)

Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)

=> BH^2 = AB^2 - AH^2         (2)

xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)

có HC = AC - AH

=> BC^2 = HB^2 + (AC - AH)^2 

=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)

=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2

=> BC^2 = AB^2 + AC^2 - AB.AC

3 tháng 11 2018

Kẻ BH ⊥ AC tại H.
Xét tam giác ABH có góc BHA = 90độ (cách kẻ)
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)
Áp dụng định lý Py-ta-go ta có:
AB² = BH² + AH²
=> BH² = AB² - AH² (2)
Xét tam giác BHC có góc BHC = 90độ (cách kẻ)
=> Áp dụng định lý Py-ta-go ta có:
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)
Thay (1) và (2) vào (3) ta có:
BC² = (AB² - AH²) + AC² - AB.AC + AH²
<=> BC² = AB² - AH² + AC² - AB.AC + AH
<=> BC² = AB² + AC² - AB.AC

chúc bạn học tốt

19 tháng 1 2015

rất hân hạnh làm quen you!(^^)

vẽ ch vuông với ab

tam giác hac vuông tại h,có góc a=60độ nên là nửa tam giác đều

nên AH=AC/2

DO ĐÓ HB=AB-AH=AB-AC/2(1)

TAM GIÁC HAC CÓ GÓC H =90 ĐỘ ,NÊN

AC^2=AH^2+HC^2,NÊN HC^2=AC^2-(AC/2)^2=3AC^2/4(2)

TAM GIÁC HBC VUÔNG TẠI,NÊN

BC^2=HB^2+HC^2

TỪ (1)VÀ (2),TA CÓ

BC^2=(AB-AC/2)^2+3AC^2/4=(AB-AC/2)(AB-AC/2)=3AC^2/4

        =AB(AB-AC/2)-AC/2(AB-AC/2)+3AC^2/4

        =(AB^2-AB*AC+AC^2/4)+3AC^2/4

       =AB^2+AC^2-AB*AC

    XONG RỒI ĐÓ.GIÚP TUI CÁI COI!

TUI MỚI ĐK NÊN K.O BIẾT LÀM SAO VÀO THU TOÁN 7

 

4 tháng 3 2018

Trước hết bạn cần biết bổ đề sau:

"Trong 1 tam giác vuông, có 1 góc bằng 30 độ thì cạnh góc vuông đối diện với góc 30 độ bằng nửa cạnh huyền" - phần chứng minh xin nhường lại cho bạn, gợi ý là vẽ thêm trung tuyến ứng với cạnh huyền để chứng minh 
Kẻ BH ⊥ AC tại H. 
Xét tam giác ABH có góc BHA = 90độ (cách kẻ) 
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ 
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ 
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1) 
Áp dụng định lý Py-ta-go ta có: 
AB² = BH² + AH² 
=> BH² = AB² - AH² (2) 
Xét tam giác BHC có góc BHC = 90độ (cách kẻ) 
=> Áp dụng định lý Py-ta-go ta có: 
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3) 
Thay (1) và (2) vào (3) ta có: 
BC² = (AB² - AH²) + AC² - AB.AC + AH² 
<=> BC² = AB² - AH² + AC² - AB.AC + AH 
<=> BC² = AB² + AC² - AB.AC 
Kết luận