Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(m_a=\sqrt{\frac{b^2+c^2}{2}-\frac{a^2}{4}}=\frac{\sqrt{2b^2+2c^2-a^2}}{2}=\frac{\sqrt{2b^2+2c^2-\left(2c^2-b^2\right)}}{2}=\frac{\sqrt{3}b}{2}\)
\(m_b=\sqrt{\frac{c^2+a^2}{2}-\frac{b^2}{4}}=\frac{\sqrt{2c^2+2a^2-b^2}}{2}=\frac{\sqrt{2c^2+2a^2-\left(2c^2-a^2\right)}}{2}=\frac{\sqrt{3}a}{2}\)
\(m_c=\sqrt{\frac{a^2+b^2}{2}-\frac{c^2}{4}}=\frac{\sqrt{2a^2+2b^2-c^2}}{2}=\frac{\sqrt{4c^2-c^2}}{2}=\frac{\sqrt{3}c}{2}\)
\(\Rightarrow m_a+m_b+m_c=\frac{\sqrt{3}}{2}\left(a+b+c\right)\)
Hình như đề nhầm dấu thì phải
Bài 14.
Áp dụng định lí hàm số Cô sin, ta có:
\(\dfrac{{{\mathop{\rm tanA}\nolimits} }}{{\tan B}} = \dfrac{{\sin A.\cos B}}{{\cos A.\sin B}} = \dfrac{{\dfrac{a}{{2R}}.\dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}}}}{{\dfrac{b}{{2R}}.\dfrac{{{c^2} + {b^2} - {a^2}}}{{2bc}}}} = \dfrac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}} \)
Bài 19.
Áp dụng định lí sin và định lí Cô sin, ta có:
\( \cot A + \cot B + \cot C\\ = \dfrac{{R\left( {{b^2} + {c^2} - {a^2}} \right)}}{{abc}} + \dfrac{{R\left( {{c^2} + {a^2} - {b^2}} \right)}}{{abc}} + \dfrac{{R\left( {{a^2} + {b^2} - {c^2}} \right)}}{{abc}} = \dfrac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}\left( {dpcm} \right) \)
ÁP dụng BĐT Bunhia:
\(\left(m_a+m_b+m_c\right)^2\le3\left(m_a^2+m_b^2+m_c^2\right)=\frac{9}{4}\left(a^2+b^2+c^2\right)\)
\(\Rightarrow m_a+m_b+m_c\le\frac{3}{2}\sqrt{a^2+b^2+c^2}\)
\(\Rightarrow P\ge\frac{2}{3}\frac{\sqrt{a^2+b^2+c^2}\left(ab+ac+bc\right)}{abc}\ge\frac{2}{3}\frac{\sqrt{3\sqrt[3]{a^2b^2c^2}}.3\sqrt[3]{a^2b^2c^2}}{abc}=2\sqrt{3}\)
\(\Rightarrow P_{min}=2\sqrt{3}\) khi \(a=b=c\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
a/ Từ BĐT ban đầu ta có:
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)
b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:
\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)
c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:
\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:
\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)
Mặt khác ta cũng có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)