Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: BC=10cm
AH=4,8cm
BH=3,6cm
CH=6,4cm
AD=AC/2=3cm
Câu c đề sai rồi bạn
hướng dẫn:
a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)
** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**
=> BE = CD
b) (1) => ABE^ = ACD^
c) Dễ thấy BD = CE
từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)
=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân
a) xét tam giác ABC ta có AM là trung tuyến
\(\Rightarrow\) AM = \(\dfrac{1}{2}\) BC \(\Leftrightarrow\) AM = MB = MC
\(\Rightarrow\) tam giác AMC cân tại M (MA = MC)
\(\Leftrightarrow\) \(\widehat{MAC}=\widehat{MCA}\)
mà ta có : \(\widehat{MCA}=\widehat{HAB}\) (cùng phụ góc HBA)
\(\Rightarrow\widehat{HAB}=\widehat{MAC}\) (ĐPCM)
Bài 2:
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó:ABEC là hình bình hành
Suy ra: AC=BE và AC//BE
b: Xét tứ giác AIEK có
AI//KE
AI=KE
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
hay I,M,K thẳng hàng
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
b: Ta có: ΔABE=ΔACD
nên \(\widehat{ABE}=\widehat{ACD}\)
c: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KCB}=\widehat{KBC}\)
hay ΔKBC cân tại K