Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
Qua E vẽ đường thẳng song song với AC và cắt BC tại N, suy ra góc EMB = góc ACB (đồng vị)
Tam giác ABC cân tại A, suy ra góc ABC = góc ACB
Suy ra góc ABC = góc EMB, do đó tam giác EBM cân tại E, suy ra EB = EM = CD
Từ đó dễ CM được tam giác EMN = tam giác DMC (g.c.g), rồi suy ra EM = DM (cạnh tương ứng)
Vậy M là trung điểm ED (đpcm)
A B C D E F K
Từ D kẻ đt // với BC cắt AC tại K.
Ta có góc AKD=góc ACB
góc ADK=góc ABC
góc ACB= Góc ABC
=> góc ADK=góc AKD
=> tam giác ADK cân tại A=>AD=AK mà AB=AC
=>BD=CK mặt khác BD=CE
=>CK=CE
Xét tam giác DEK có C là tđ EK;CF//DK
=>F là tđ DE
Từ E dựng đường thẳng d//AB, kéo dài BC về phía C cắt d tại K
Ta có
\(ABC=ACB\)(Do tg ABC cân tại A) (1)
\(ECK=ACB\)(góc đối đỉnh) (2)
\(ABC=EKC\) (góc so le treong) (3)
Từ (1) (2) (3) ⇒\(ECK=EKC=>ECK\)cân tại E => CE=KE mà DB=CE => KE=DB
Ta lại có KE//DB
=> BDKE là hình bình hành (tứ giác có cặp cạnh đối // và = nhau)
=> BK và DE là hai đường chéo của hình bình hành BDKE => BK đi qua trung điểm của DE => DF=FE
mà BC thuộc BK => BC đi qua trung điểm F của DE
Câu a bạn làm được thì mình khỏi làm lại nhé! Còn đây là câu b và c.
Xét \(\Delta\)NBD và \(\Delta\)ECM có: BD=CE(gt), NB=CM(gt),ND=ME (c/m a)
=> \(\Delta\)=\(\Delta\) (ccc) => \(\widehat{DNB}=\widehat{CME}\) mà \(\widehat{CME}=\widehat{DMB}\) (đối đỉnh)
=> \(\widehat{DNB}=\widehat{DMB}\). Xét tam giác NDM có: \(\widehat{DNB}=\widehat{DMB}\) => \(\Delta\)NDM cân tại D => DN=DM mà DN=ME (c/m a) => DM=ME (1)
Ta có B.M,C thẳng hàng =>\(\widehat{BMD}+\widehat{DMC}=180^o\)
Mặt khác \(\widehat{BMD}=\widehat{CME}\) ( cùng = \(\widehat{BND}\))
=>\(\widehat{CME} +\widehat{DMC}=180^o\) => D,M,E thẳng hàng (2)
Từ (1) và (2) => M trung điểm DE.
bạn ơi có sai đầu bài ko vậy
phải là trên tia đối của CA chứ