K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Ta xét các TH sau:

TH1: \(x\geq 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=x-5\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=2x+2\)

Để hàm số đc xác định thì \(2x+2\neq 0\Leftrightarrow x\neq -1\), luôn đúng với \(x\geq 5\)

TH2: \(2< x< 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=4x-8\)

Để hàm số đc xác định thì \(4x-8\neq 0\), điều này luôn đúng với \(2< x< 5\)

TH3: \(-1\leq x\leq 2\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=0\)

(Không thỏa mãn)

TH4: \(x< -1\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=-(x+1)\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=-2(x+1)\)

Để hàm số đc xác định thì \(-2(x+1)\neq 0\), điều này luôn đúng với mọi \(x< -1\)

Từ các TH trên , ta suy ra \(x\in (2; +\infty)\cup (-\infty; -1)\)

Vậy \(a=-1; b=2\)

20 tháng 9 2019

ta có:

A = {x\(\in\) R; -5 \(\le\) x < 7}

\(\Rightarrow\) A = [-5;7)

\(\Rightarrow\) \(C^A_R\) = (-\(\infty\);-5) \(\cup\) [7;+\(\infty\))

Đáp án: D

NV
15 tháng 5 2020

\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........

NV
28 tháng 9 2020

a/ \(\Leftrightarrow\left[{}\begin{matrix}a>1\\\frac{a+1}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a>1\\a< -3\end{matrix}\right.\)

b/ \(\left(-\infty;5\right)\cup\left(-3;+\infty\right)=R\) nên với mọi a thì \(\left[a;\frac{a+1}{2}\right]\in\left(-\infty;5\right)\cup\left(-3;+\infty\right)\)

NV
27 tháng 9 2020

Đúng bạn

- Nếu \(\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}\le2\end{matrix}\right.\) \(\Leftrightarrow-1\le m\le3\) thì \(A\cap B=\varnothing\) (ktm)

- Nếu \(m< -1\Rightarrow m-1< -2\Rightarrow A\cap B=[m-1;2)\) chứa vô số phần tử

- Nếu \(m>3\Rightarrow A\cap B=(2;\frac{m+1}{2}]\) cũng chứa vô số phần tử

Vậy ko tồn tại m để \(A\cap B\) chỉ chứa 1 phần tử

27 tháng 9 2020

hình như đề sai đúng không ta ai đấy giải thử cho em xem vs ạ

27 tháng 9 2019

B