Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2x^3+\left(m-14\right)x^2+\left(2m+6\right)x-3m+9=0\)
\(\Leftrightarrow x^4-2x^3-14x^2+6x+9+m\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x-3\right)+m\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x+m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=0\\x^2-4x+m-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x^2-4x+m-3=0\left(1\right)\end{matrix}\right.\)
a/ Tập X có đúng 4 phần tử khi và chỉ khi (1) có 2 nghiệm pb khác 1 và -3
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(m-3\right)>0\\1^2-4.1+m-3\ne0\\\left(-3\right)^2-4.\left(-3\right)+m-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 7\\m\ne6\\m\ne-18\end{matrix}\right.\)
b/ Do (1) không thể đồng thời có 2 nghiệm \(\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) nên X có 2 phần tử khi:
TH1: \(\left(1\right)\) vô nghiệm \(\Leftrightarrow\Delta'< 0\Leftrightarrow m>7\)
TH2: (1) có nghiệm kép \(x=1\) hoặc \(x=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=0\\\left[{}\begin{matrix}-\frac{b}{2a}=1\\-\frac{b}{2a}=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=7\\\left[{}\begin{matrix}2=1\\2=-3\end{matrix}\right.\end{matrix}\right.\) (ko có m thỏa mãn)
Vậy \(m>7\)
\(x^2+2\left(m-3\right)x-4m+8=0\) (1)
\(\Leftrightarrow x^2-6x+8+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4+2m\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\)
Vậy \(Y=\left\{2;-2m+4\right\}\)
Xét pt \(x^2+4x-2m+10=0\left(2\right)\)
a/ Để \(X\cup Y\)có đúng 4 phần tử \(\Leftrightarrow\) (1) và (2) đều có 2 nghiệm pb và ko có nghiệm chung
\(\Leftrightarrow\left\{{}\begin{matrix}-2m+4\ne2\\\Delta'_{\left(2\right)}=4-\left(-2m+10\right)>0\\2^2+4.2-2m+10\ne0\\\left(-2m+4\right)^2+4.\left(-2m+4\right)-2m+10\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>3\\m\ne11\\\left\{{}\begin{matrix}m\ne\frac{7}{2}\\m\ne3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>3\\m\ne\left\{\frac{7}{2};11\right\}\end{matrix}\right.\)
b/
Để (1) và (2) có (thể có) 2 nghiệm chung
\(\Rightarrow\left\{{}\begin{matrix}2m-6=4\\-4m+8=-2m+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
Vậy (1) và (2) luôn có tối đa 1 nghiệm chung
Để (2) có nghiệm \(\Rightarrow\Delta'_{\left(2\right)}\ge0\Rightarrow m\ge3\)
\(X\cap Y\) có 1 phần tử khi và chỉ khi (1) và (2) có 1 nghiệm chung \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\) là nghiệm của (2)
TH1: \(x=2\) là nghiệm của (2)
\(\Rightarrow2^2+4.2-2m+10=0\)
\(\Leftrightarrow m=11\)
TH2: \(x=-2m+4\) là nghiệm của (2)
\(\Leftrightarrow\left(-2m+4\right)^2+4\left(-2m+4\right)-2m+10=0\)
\(\Leftrightarrow4m^2-26m+42=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=\frac{7}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=11\\m=3\\m=\frac{7}{2}\end{matrix}\right.\)
\(x^4-16\left(x^2-1\right)=0\Leftrightarrow x^4-16x^2+16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=8+4\sqrt{3}\\x^2=8-4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow A=\left\{-\sqrt{6}-\sqrt{2};\sqrt{2}-\sqrt{6};\sqrt{6}-\sqrt{2};\sqrt{2}+\sqrt{6}\right\}\)
\(2x\le9\Rightarrow x\le\frac{9}{2}\Rightarrow B=\left\{0;1;2;3;4\right\}\)
Bạn coi lại đề, tập hợp A nhìn rất có vấn đề :)
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
\(\Leftrightarrow2x^4-10x^3+\left(m+12\right)x^2-4mx-m^2=0\) có 3 nghiệm
\(\Leftrightarrow\left(x^2-2x+m\right)\left(2x^2-6x-m\right)=0\) có 3 nghiệm
Xét 2 pt: \(x^2-2x+m=0\) (1) và \(2x^2-6x-m=0\) (2)
Để pt đã cho có 3 nghiệm thì:
TH1: (1) có 2 nghiệm pb và (2) có nghiệm kép khác 2 nghiệm của (1)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m=0\end{matrix}\right.\) \(\Rightarrow m=-\frac{9}{2}\)
Thay \(m=-\frac{9}{2}\) vào (1) thấy 2 nghiệm của (1) thỏa mãn khác nghiệm của (2)
TH2: (1) có nghiệm kép và (2) có 2 nghiệm pb khác nghiệm của (1)
\(\Leftrightarrow\left\{{}\begin{matrix}1-m=0\\9+2m>0\end{matrix}\right.\) \(\Rightarrow m=1\)
Thay \(m=1\) vào (2) ta cũng thấy thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m>0\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{9}{2}< m< 1\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\)
Gọi \(x_0\) là nghiệm chung của (1) và (2)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-2x_0+m=0\\2x_0^2-6x_0-m=0\end{matrix}\right.\) \(\Rightarrow3x_0^2-8x_0=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=\frac{8}{3}\end{matrix}\right.\)
- Với \(x_0=0\Rightarrow m=0\)
- Với \(x_0=\frac{8}{3}\Rightarrow m=-\frac{16}{9}\)
Vậy \(m=\left\{-\frac{9}{2};1;0;-\frac{16}{9}\right\}\)
Có đúng 1 giá trị nguyên của m là \(m=1\) thỏa mãn thuộc (0;10)