Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{19;20\right\}\)
\(B=\left\{1;2;3;\right\}\)
\(C=\left\{35;36;37;38\right\}\)
A={6;7;8}
b, mk ko ghi tên các tập hợp con nhé
{6;7} ; {6;8} ; {7;8}
a) A = { 6 ; 7 ; 8 }
b) Các tập hợp con của A là có 2 phần tử là : \(\varnothing\); { 6 ; 7 } ; { 6 ; 8 }
1, Ta có: A = { 0; 1; 2; 3; 4; 5; 6 }
B = { 3; 4; 5 }
C = { 1; 2; 3; ... }
D = \(\varnothing\)
G = \(\varnothing\)
H = { 9; 10; 11; 12; 13; 14; 15 }
2, Ta có: E \(\subset\) C
3, Vì không có phần tử nào thuộc tập hợp G
Nên tổng các phần tử của hai tập hợp E và G bằng tổng các phần tử của tập hợp E
=> Tổng các phần tử của tập hợp E và G là:
[ ( 99 - 10 ) : 1 + 1 ]( 99 + 10 ) : 2 = 90 . 109 : 2 = 4905
b, dcba = 1000d +100c +10b +a=(1000d+96c+8b)+(a+2b+4c)
mà 100d +96c +8b chia hết cho 8
suy ra a+2b+4c chia hết cho 8(đpcm)
Ta có : \(n=\overline{dcba}=1000d+100c+10b+a\)
\(=\left(1000d+100c+8b\right)+\left(2b+a\right)\)
\(=4\left(250d+25c+2b\right)+\left(2b+a\right)\)
Vì n chia hết cho 4 và 4(250d+25c+2b) chia hết cho 4 nên a+2b chia hết cho 4.
câu b) tương tự, ta có :\(n=8\left(125d+12c+b\right)+\left(a+2b+4c\right)\)
mà n chia hết cho 8 ; 8(125d+12c+b) chia hết cho 8 => a+2b+4c chia hết cho 8.
câu c) : \(n=16\left(62d+6c+\frac{b}{2}\right)+\left(a+2b+4c+8d\right)\)
vì b chẵn => 16(62d+6c+b/2) chia hết cho 16 mà n chia hết cho 16; => a+2b+4c+8d chia hết cho 16.
a = { 17;18;19;20;21;21;23;24;25;26;27;28;29;30;31;32}