K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DN
1
18 tháng 1 2022
Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0
\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)
\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)
Chúc bn học tốt!
PT
1
CM
8 tháng 3 2019
Chọn C.
Ta có tan α – cotα = 1
Do suy ra tanα < 0 nên
Thay
và
vào P ta được
\(0< a< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa>0\end{matrix}\right.\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}\)
\(\Rightarrow cosa=\frac{1}{2}\Rightarrow sina=cosa.tana=\frac{\sqrt{3}}{2}\)
\(cos2a=2cos^2a-1=-\frac{1}{2}\)
\(sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)
\(\Rightarrow sin\left(2a-\frac{\pi}{3}\right)=sin2a.cos\frac{\pi}{3}-cos2a.sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=-2-\sqrt{3}\)