K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Ta có: \(\frac{cosa+sina}{cosa-sina}=\frac{\frac{cosa}{cosa}+\frac{sina}{cosa}}{\frac{cosa}{cosa}-\frac{sina}{cosa}}=\frac{1+tana}{1-tana}=\frac{1+\frac{1}{3}}{1-\frac{1}{3}}=2\)

             

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

NV
1 tháng 9 2020

\(A=\frac{sina+cosa}{cosa-sina}=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{cosa}{cosa}-\frac{sina}{cosa}}=\frac{tana+1}{1-tana}=\frac{5+1}{1-5}=...\)

\(B=\frac{8cos^3a-2sin^3a+cosa}{2cosa-sin^3a}\) để làm được câu này chỉ cần nhớ đến công thức: \(\frac{1}{cos^2a}=1+tan^2a\)

\(B=\frac{\frac{8cos^3a}{cos^3a}-\frac{2sin^3a}{cos^3a}+\frac{cosa}{cosa}.\frac{1}{cos^2a}}{\frac{2cosa}{cosa}.\frac{1}{cos^2a}-\frac{sin^3a}{cos^3a}}=\frac{8-2tan^3a+1+tan^2a}{2\left(1+tan^2a\right)-tan^3a}=\frac{9-2tan^3a+tan^2a}{2+2tan^2a-tan^3a}=\frac{9-2.5^3+5^2}{2+2.5^2-5^3}=...\)

NV
4 tháng 9 2020

Đề bài yêu cầu làm gì vậy bạn?