K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

Ta có:

\(\Delta AIK\sim\Delta ABC\left(g.g\right)\Rightarrow\frac{S_{AIK}}{S_{ABC}}=\left(\frac{AI}{AB}\right)^2=c\text{os}^2A\).

Tương tự: \(\frac{S_{BHK}}{S_{ABC}}=c\text{os}^2B;\frac{S_{CIH}}{S_{ABC}}=c\text{os}^2C\).

Do đó: \(\frac{S_{HIK}}{S_{ABC}}=1-c\text{os}^2A-c\text{os}^2B-c\text{os}^2C\Rightarrow...\Rightarrow\text{đ}pcm\)

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) a/CM tu giac DHEC noi tiep duong tron b/chung minh ED=BD va goc HBD=goc HCDc/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai Ha/CM;tu giac CDHK noi tiep b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EFc/CMR; AD/HD=BD.CDb/goi I la trung diem cua BC...
Đọc tiếp

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) 

a/CM tu giac DHEC noi tiep duong tron 

b/chung minh ED=BD va goc HBD=goc HCD

c/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)

2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai H

a/CM;tu giac CDHK noi tiep 

b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EF

c/CMR; AD/HD=BD.CD

b/goi I la trung diem cua BC .CMR: H,I,F thang hang

3/cho tam giac nhon  ABC noi tiep duong tron tam O,duong cao BHva CK lan luot cat duong tron tai Eva F

a.CMR: tu giac BKHC noi tiep 

b.CM: A la diem chinh giua cu cung EF 

c.CM:OA//EF

d.CM:EF//HK

4/cho tam giac ABC vuong tai A co AB<AC.Ke duong cao AH.Tren HC lay diem D sao cho HD=Hb

a/CMR:tap giac ABD can

b/Tu C ke CF vuong goc voi AD keo dai tai E

Chung minh tu giac AHEC noi tiep duoc trong 1 duong tron .Xac dinh tam O cua duong tron nay

c/CM:AB.ED=HB.CD 

 

0

a: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDC là tứ giác nội tiếp

=>góc AED=góc ACB

Xét ΔAED và ΔACB có

góc AED=góc ACB

góc EAD chung

DO đó: ΔAED đồng dạng với ΔACB

=>\(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2=cos^2A\)

hay \(S_{ADE}=S_{ACB}\cdot cos^2A\)

b: \(S_{BCDE}=S_{ABC}-S_{ABC}\cdot cos^2A=S_{ABC}\cdot sin^2A\)