K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

<=> sin2A +cos2A +2sinA.cosA>1 ( do sinA + cosA >0)

<=> 1+ 2sinA.cosA >1

Dieu nay luon dung do 2sinA.cosA >0 voi moi gia tri cua A

Study well

17 tháng 6 2017

 ta có (sinA + cosA )*2 = sinA*2+cosA *2 + 2sinAcosA = 1+ 2sinAcosA > 1 .

Vì A là gọc nhọn nên sinA hay CosA > 0 ,

24 tháng 6 2018

Do \(0< \sin A,\cos A< 1\) (vì tam giác ABC có 3 góc nhọn) nên ta có điều dưới đây:

\(\sin A>\sin^2A\)

\(\cos A>\cos^2A\)

\(\Rightarrow\sin A+\cos A>\sin^2A+\cos^2A=1\)

19 tháng 8 2017

4

16 tháng 8 2019

b) khai triển hằng đẳng thức là ra

a) nhân tích chéo

16 tháng 8 2019

\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)

\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)

a: \(\sin^2a+\cos^2a=1\)

\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)

hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)

b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)

\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)

26 tháng 12 2018

VT=\(\dfrac{c\text{os}a}{1-sina}\)

\(=\dfrac{c\text{os}a\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\dfrac{c\text{os}a\left(1+sina\right)}{1-sin^2a}\\ \\ \\ =\dfrac{c\text{os}a\left(1+sina\right)}{c\text{os}^2a}=\dfrac{1+sina}{c\text{os}a}=VP\left(\text{đ}pcm\right)\)

2 tháng 7 2019

\(=\frac{\left(\sin a+\cos a-\sin a+\cos a\right)\left(\sin a+\cos a+\sin a-\cos a\right)}{\sin a.\cos a}=\frac{2.\cos a.2.\sin a}{\sin a.\cos a}=4\)

17 tháng 10 2019

bạn tự vẽ hình nha thông cảm cho mình

a) vẽ đường cao BH (BH⊥AC,H∈AC)

Ta có : \(\sin A+\cos A=\frac{BH}{AB}+\frac{AH}{AB}\)\(\left(\sin A=\frac{BH}{AB},\cos A=\frac{AH}{AB}\right)\)

\(\Leftrightarrow\sin A+\cos A=\frac{BH+AH}{AB}\)

Xét tam giác AHB ta có : \(BH+AH>AB\) (BĐT tam giác)

\(\Leftrightarrow\)\(\frac{BH+AH}{AB}>1\)

\(\Leftrightarrow\sin A+cosA>1\)(đpcm)

b)Ta có :\(\cot B=\frac{BH}{AH},\cot C=\frac{HC}{AH},BH+HC=BC\)

VP:\(AH\cdot\left(\cot B+\cot C\right)\)

\(=AH\cdot\left(\frac{BH}{AH}+\frac{HC}{AH}\right)\)

\(=BH+HC\)

\(=BC\) (đpcm)

c) Ta có:\(\tan B=\frac{AH}{BH}\)

Hay \(\tan\left(60\right)=\frac{6}{BH}\)

\(\Leftrightarrow BH=\frac{6}{\tan\left(60\right)}\)

\(\Leftrightarrow BH=2\sqrt{3}\)

Ta có :\(\tan\left(45\right)=\frac{AH}{HC}\)

Hay \(\tan\left(45\right)=\frac{6}{HC}\)

\(\Leftrightarrow HC=\frac{6}{\tan\left(45\right)}\)

\(\Leftrightarrow HC=6\)

Ta có :BH+HC=BC

Hay \(2\sqrt{3}+6=BC\)

\(\Leftrightarrow2\sqrt{3}+6\approx9.5\)

Ta có: SABC \(=\frac{1}{2}\cdot BC\cdot AH\)

Hay SABC\(=\frac{1}{2}6\cdot9.5\)

\(\Leftrightarrow SABC=28.5\)

Vậy SABC=28.5cm

17 tháng 10 2019

mình nhầm \(28.5cm^2\)