Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét tứ giác ABCE có
N là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//EC
=>C,E,D thẳng hàng
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
A B C M D E N I
a/
Xét tg AMB và tg MNC có
MB=MC (giả thiết)
MA=MN (giả thiết)
\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)
=> tg AMB = tg NMC (c.g.c)
b/ Nối A với I cắt BD tại M'
Xét tg ADE có
BE=BA (gt) => DE là trung tuyến của tg ADE
IE=ID (gt) => AI là trung tuyến của tg ADE
=> M' là trọng tâm của tg ADE => \(BM'=\dfrac{1}{3}BD\) (1)
Ta có
MB=MC (gt); MC=CD (gt) => MB=MC=CD
BD=MB+MC+CD
=> \(BM=\dfrac{1}{3}BD\) (2)
Từ (1) và (2) => \(M'\equiv M\)
=> A; M; I thẳng hàng
Tam giác ABC có: G là giao điểm của trung tuyến AM và BN (gt)
=> G là trọng tâm tam giác ABC
=>GM = 1/2 GA (đ/lí 3 trung tuyến của tam giác) (1)
Có GM = MK (gt)
Mà GM + MK = GK
=> GM = MK = 1/2 GK (2)
Từ (1)(2) => GA = GK
b, Xét tam giác BMK và tam giác CMG
BM = CM (gt)
góc BMK = góc CMG (đối đỉnh)
MK = MG (gt)
=> tam giác BMK = tam giác CMG (c.g.c)
c, Xét tam giác ABM và tam giác QCM
MA = QM (gt)
góc AMB = góc QMC ( đối đỉnh)
MB = MC (gt)
=> tam giác ABM = tam giác QCM(c.g.c)
=> góc BAQ = góc CQA ( cặp góc tương ứng)
=> AB // QC ( vì góc BAQ và góc CQA là 2 góc so le trong (3)
Xét tam giác BAN và tam giác ICN
BN = NI (gt)
góc BNA = góc INC (đối đỉnh)
AN = CN (gt)
=> tam giác BAN = tam giác ICN (c.g.c)
=> góc BAN = góc ICN (cặp góc tương ứng)
=> AB // CI (vì góc BAN và góc ICN là 2 góc so le trong) (4)
Từ (3)(4) => Q, C, I thẳng hàng