K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

Tam giác ABC có: G là giao điểm của trung tuyến AM và BN (gt)

=> G là trọng tâm tam giác ABC

=>GM = 1/2 GA (đ/lí 3 trung tuyến của tam giác)  (1)

Có GM = MK (gt)

Mà GM + MK = GK

=> GM = MK = 1/2 GK    (2)

Từ (1)(2) => GA = GK

b, Xét tam giác BMK và tam giác CMG

BM = CM (gt)

góc BMK = góc CMG (đối đỉnh)

MK = MG (gt)

=> tam giác BMK = tam giác CMG (c.g.c)

c, Xét tam giác ABM và tam giác QCM

MA = QM (gt)

góc AMB = góc QMC ( đối đỉnh)

MB = MC (gt)

=> tam giác ABM = tam giác QCM(c.g.c)

=> góc BAQ = góc CQA ( cặp góc tương ứng)

=> AB // QC ( vì góc BAQ và góc CQA là 2 góc so le trong (3)

Xét tam giác BAN và tam giác ICN

BN = NI (gt)

góc BNA = góc INC (đối đỉnh)

AN = CN (gt)

=>  tam giác BAN = tam giác ICN (c.g.c)

=> góc BAN = góc ICN (cặp góc tương ứng)

=> AB // CI (vì góc BAN và góc ICN là 2 góc so le trong) (4)

Từ (3)(4) => Q, C, I thẳng hàng

a: Xet ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

b: ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//CD

c: Xét tứ giác ABCE có

N là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//EC

=>C,E,D thẳng hàng

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

14 tháng 8 2023

A B C M D E N I

a/

Xét tg AMB và tg MNC có

MB=MC (giả thiết)

MA=MN (giả thiết)

\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)

=> tg AMB = tg NMC (c.g.c)

b/ Nối A với I cắt BD tại M'

Xét tg ADE có

BE=BA (gt) => DE là trung tuyến của tg ADE

IE=ID (gt) => AI là trung tuyến của tg ADE

=> M' là trọng tâm của tg ADE => \(BM'=\dfrac{1}{3}BD\) (1)

Ta có

MB=MC (gt); MC=CD (gt) => MB=MC=CD

BD=MB+MC+CD

=> \(BM=\dfrac{1}{3}BD\) (2)

Từ (1) và (2) => \(M'\equiv M\)

=> A; M; I thẳng hàng