Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để căn2.MA+MB+MC nhỏ nhất thì MA+MB+MC nhỏ nhất
Để MA+MB+MC nhỏ nhất thì A trùng với M.Khi đó căn2.MA+MC+MB=7
A B C M D E
a) Xét \(\Delta MBD\)và \(\Delta MAC\)
có: \(\widehat{MAC}=\widehat{MBD}\)( cùng chắn cung MC)
\(\widehat{BMD}=\widehat{AMC}\)( cung AB=cung AC vì AB=AC)
=> \(\Delta MBD\)~ \(\Delta MAC\)
b) Từ câu a)_
=> \(\frac{MB}{MA}=\frac{BD}{AC}\)(1)
\(\frac{MC}{MA}=\frac{MD}{MB}\)(2)
Dễ dàng chứng minh đc:
\(\Delta BDM~\Delta ADC\)
=> \(\frac{MD}{MB}=\frac{DC}{AC}\)(3)
Từ (1), (2), (3)
=> \(\frac{MB}{MA}+\frac{MC}{MA}=\frac{BD}{AC}+\frac{CD}{AC}=\frac{BC}{AC}\)\(=\frac{BC}{AB}\)
c) Lấy điểm E thuộc đoạn
A B C M D E N P
Ta dựng các tam giác đều AMP , AMN , ACE , ABD , suy ra N,P,E,D cố định.
Dễ dàng chứng minh được \(\Delta APE=\Delta AMC\left(c.g.c\right)\)
\(\Rightarrow MC=PE\), \(AM=MP\)
Suy ra : \(AM+MC+BM=BM+MP+PE\ge BE\)(hằng số)
Tương tự , ta cũng chứng minh được \(AM=MN\), \(BM=DN\)
\(\Rightarrow AM+MC+MB=CM+MN+DN\ge CD\)(hằng số)
Suy ra MA + MB + MC đạt giá trị nhỏ nhất khi M là giao điểm của BE và CD.
Cần chú ý : Vì điều kiện các góc của tam giác nhỏ hơn 180 độ :
\(\widehat{BAC}+\widehat{CAE}< 120^o+60^o=180\)
\(\widehat{BAC}+\widehat{BAD}< 120^o+60^o=180^o\)
nên BE cắt AC tại một điểm nằm giữa A và C , CD cắt AB tại một điểm nằm giữa A và B. Do đó tồn tại giao điểm M của CD và BE.
a,xét tam giác DMB và DCA có:
góc BDM=ADC
góc BMD=ACD(góc nt cug chắn cug AB)
=>2 tam giác này đồng dạng vs nhau
a, xé tam giác MBD cà MAC có:
góc MBD=MAC( góc nt cug chắn cung MC)
góc BMA=AMC(chắn 2 cug bằng nhau)
=>2 tam giác này đồng dạng vs nhau
Cho tam giác vuông tại A cố định, có AB=3, AC=4.Một điểm M bất kì trong mặt phẳng chứa tam giác ABC.Tính giá trị nhỏ nhất của căn2.MA +MB+MC=7
dùng phép quay tâm A các đoạn AM MC một góc = 90 độ