K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn nào giúp mình bài này với =))1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.a) Tứ giác ACBD là hình gì ? b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng c) Chứng minh HI là tiếp tuyến của...
Đọc tiếp

Bạn nào giúp mình bài này với =))

1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.

a) Tứ giác ACBD là hình gì ? 

b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng 

c) Chứng minh HI là tiếp tuyến của đường trong ( O')

2. Cho tam giác OAO' vuông tại A ( O'A < OA ) . Vẽ hai đường tròn ( O; OA ) và (O' ; O'A ).

a) Chứng minh 2 đường trong (O) và (O') cắt nhau 

b) Gọi B là giao điểm ( khác A ) của 2 đường tròn ( O ) và (O') . Chứng minh đường thẳng OB là tiếp tuyến của đường tròn (O')

c) Gọi I là trung điểm của OO' và C là điểm đối xứng của A qua I . Chứng minh tứ giác OO'BC là hình thang cân .

0
16 tháng 10 2021

a, Xét tam giác MON có : OM = ON = R

=> tam giác MON cân tại O, do OI vuông MN hay OI là đường cao 

đồng thời là đường phân giác => ^MOI = ^ION 

Vì BN là tiếp tuyến đường tròn (O) với N là tiếp điểm 

=> ON vuông BN hay ^ONB = 900 

Xét tam giác IOM và tam giác NOB có : 

^IOM = ^NOB ( cmt )

^OIM = ^ONB = 900

Vậy tam giác IOM ~ tam giác NOB ( g.g ) 

=> \(\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\)

ý b sáng mai mình gửi nhé ;)) 

16 tháng 10 2021

 sửa hộ mình chỗ này nhé : ^OIM = ^ONB = 900 

b,  Vì I là trung điểm điểm OA => \(IO=IA=\frac{OA}{2}=\frac{R}{2}\)

Theo định lí Pytago tam giác OIM ta được : 

\(MI=\sqrt{OM^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\sqrt{\frac{3R^2}{4}}=\frac{\sqrt{3}R}{2}\)

Vì BM là tiếp tuyến đường tròn (O) và M là tiếp điểm 

=> OM vuông MB hay ^OMB = 900 => tam giác OMB vuông tại M 

Xét tam giác OMB vuông tại M, đường cao MI 

Áp dụng hệ thức : \(\frac{1}{OM^2}+\frac{1}{MB^2}=\frac{1}{MI^2}\Rightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{1}{\frac{3R^2}{4}}\)

\(\Leftrightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{4}{3R^2}\Leftrightarrow\frac{1}{MB^2}=\frac{4}{3R^2}-\frac{1}{R^2}=\frac{1}{3R^2}\Rightarrow MB=\sqrt{3}R\)

CM : tam giác OMB = tam giác ONB ( ch - gn ) 

Ta có : \(S_{OMNB}=S_{OMB}+S_{ONB}=2S_{OMB}=\frac{2.1}{2}.OM.MB\)

\(=R.\sqrt{3}R=\sqrt{3}R^2\)

30 tháng 12 2015

a, OA = OI = O'A = AI

    O'AO = 90

=> AOIO' là hình vuông

b, cung AI = 90 độ ( cả 2 cái )

c, Chúng = nhau

30 tháng 12 2015

xin đại ca kí chữ kí cho em ở chỗ li-ke cho em nha

xin chân thành cảm ơn đại ca

31 tháng 7 2015

Mừng quá. Xong hết rồi. Hơn nửa tiếng bây giờ cũng được đền đáp =))

a) MB = MC (=MA) (giao điểm 2 tiếp tuyến cách đều tiếp điểm)

b) MA = MB = MC => T/g ABC vuông tại A => ^A = 90

T/g OAB cân tại O, có OM là đ/phân giác nên OM cũng là đ cao hay ^ANM = 90

Tương tự, ^APM = 90

=> đpcm

c) MO'/MO = O'C/BM (CMO' ~ BOM) = O'C/CM = CP/MP (CMO' ~ PMC) = MN/MP (PMC = NBM góc vuông - cạnh huyền - góc nhọn so le trong)

=> đpcm

d) Trong t/g vuông OMO' có MA là đường cao, OM^2 = OA.OO' <=> OM = 20 => BM = 12 (Pytago) => BC = 24

e) Dùng ta lét tìm ra OE, EC, còn OC tìm theo pytago trong t/g vuông OBC

f) ABKC là hình chữ nhật => AK cắt BC tại trung điểm M => đpcm

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400a) Tính góc AOBb) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cânBài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba...
Đọc tiếp

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400

a) Tính góc AOB

b) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cân

Bài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn , nó cắt Ax , By lần lượt tai C và D

a) chứng minh : Tam giác COD là tam giác vuông

b)Chứng minh : MC.MD=OM2

c) Cho biết OC=BA=2R, tính AC và BD theo R

Bài 3 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài với nhau tại B. Vẽ đường kính AB của đường tròn (O) và đường kính BC của đường tròn (O'). Đường tròn đường kính OC cắt (O) tại M và N

a)Đường thẳng CM cắt (O') tại P Chứng minh : OM////BP

b) Từ C kẽ đường thẳng vuông góc với CM cắt tia ON tại D . Chứng minh : Tam giác OCD là tam giác cân

1

Bài 2:

a: Xét (O) có

CM,CA là tiếp tuyến

nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

b:

Xét ΔCOD vuông tại O có OM là đường cao

nên MC*MD=OM^2

c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)