Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học
Xét tam giác ABC:
Ta có: EB = EA, FA = FC (gt)
Nên EF // BC, EF = 1/2 BC.
Xét tam giác BDC có: HB = HD, GD = GC (gt)
Nên HG // BC, HG = 1/2 BC.
Do đó EF //HG, EF = HG.
Tương tự EH // FG, EH = FG
Vậy EFGH là hình bình hành.
a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC
b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC
c) EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC
a)
DEA = EAF = AFD = 900
=> AEDF là hình chữ nhật
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
D là trung điểm của BC
mà DF // AB (DF _I_ AC; AB _I_ AC)
=> F là trung điểm của AC
mà F là trung điểm của ND (N đối xứng D qua AC)
=> ADCN là hình bình hành
mà AC _I_ ND (N đối xứng D qua AC)
=> ADCN là hình thoi
=> AN // BC
mà AM // BC (ADBM là hình thoi)
=> M, A, N thẳng hàng
AN = CD (ADCN là hình thoi)
AM = BD (ADBM là hình thoi)
=> CD = BD (D là trung điểm của BC)
=> AM = AN
=> M đối xứng N qua A
d)
AEDF là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A