K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

26 tháng 8 2021

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

ABCHÁp dụng định lý Py - ta - Go vào tam giác ABC vuông tại A có :

AC2 = BC2 - AB2

AC2 = 5232=3(AC>0)52−32=3(AC>0)

Ta có : SABC=12AB.ACSABC=12AB.AC

Mà : SABC=12AH.BCSABC=12AH.BC

⇒ 12AB.AC=12AH.BC12AB.AC=12AH.BC

⇔ AH = AB.ACBC=3.45=2,4(cm)

ACBH

a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881 

=> AB = 881881

Lại có : BH.HC =  AH2

<=> HC.25 = 162

<=> HC.25 = 256

<=> HC = 256 : 25 = 10,24

Ta có : BC = HC + BH = 10,24 + 25 = 35,24 

Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576

=> AC = 360,8576

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

11 tháng 10 2017

a) 
xét tam giác ABC vuông tại A: 
=> tan C= AH/HC=12/15=0.8 (tỉ số lượng giác) 
=>C=40 độ 
ta có: góc B= 90 độ - góc C (vì C+B=90 vì A=90 ) 
góc B=90 độ - 40 độ 
góc B=50 độ. 
xét tam giác ABC vuông tại A có: 
Cos B = AH/BH (tỉ số lượng giác) 
=> BH=AH/ cos B = 12/cos 50 độ=18.67 cm 
b) xét tam giác ABC vuông tại A có: 
AB^2 = BH*BC (hệ thức lượng) 
AB^2=18.67*25 
AB^2=466.7 
=>AB=21.6 
ta lại có: 
AH*BC=AB*AC (hệ thức lượng) 
12 * 25= 21.6*AC 
=>AC=(12*25)/21.6=13.89 cm 

12 tháng 10 2017

a) Đặt BH=x => CH=BC-BH=25-x

Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A, AH vuông góc với BC, ta có:

    +) AH2= BH . CH

  hay 122= x(25-x)

    <=> 144=25x-x2

    <=> x2-25x+144=0

   <=>(x2-9x)-(16x-144)=0

   <=>x(x-9)- 16(x-9)=0

   <=>(x-9)(x-16)=0

   <=> x-9=0           x=9

                      <=>

          x-16=0         x=16

vì AB<AC nên BH<CH. Mà BC =25=> x=BH=9 cm=> CH= 25-9=16cm

+) AB2=BH. BC=9. 25=225=> AB=15cm

+)AC2=CH. BC= 16.25=400=> AC=20cm

b)Ta có: snB= AC/BC= 0,8=> góc B=53 độ

Xét tam giác ABC có đường trung tuyến AM=> AM=1/2 BC= BM=> tam giác ABM cân tại M => góc B = góc BAM=53 độ

=> AMH hay AMB= 180 độ- ( 53 độ+53 độ)=74 độ

c) Áp dụng định lí Py-ta -go vào tam giác ABH ta có :

BH2= AB2- AH2

hay BH2= 152-122=81=> BH= 9cm

Ta có : BM=1/2 BC=1/2.25=12,5 cm=> HM= BM-BH=12,5-9=3,5cm

=> S tam giác AHM= AH.HM:2=12.3,5:2=21cm2

Có nhiều cách giải, bạn làm theo cách này cx đc

                                           

f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH+CH=25

hay BH=25-CH(2)

Thay (2) vào (1), ta được:

\(HC\left(25-HC\right)=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)