K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Vì ∆ ABC đồng dạng với ∆ AMN nên:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích hình chữ nhật MNPQ là:

SMNPQ = MN. NP = MN.KH = MN.( AH – AK)

=> SMNPQ = 16k.( 12- 12k)

Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên

16k.( 12- 12k ) = 36

⇔ 16k.12( 1- k) = 36

⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)

⇔ 16k – 16k2 = 3

⇔ 16k2- 16k + 3= 0

Ta có: ∆’= (-8)2 – 16.3 = 16> 0

Phương trình trên có 2 nghiệm là:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 10 2019

Vì ∆ ABC đồng dạng với ∆ AMN nên:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích hình chữ nhật MNPQ là:

SMNPQ = MN. NP = MN.KH = MN.( AH – AK)

=> SMNPQ = 16k.( 12- 12k)

Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên

16k.( 12- 12k ) = 36

⇔ 16k.12( 1- k) = 36

⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)

⇔ 16k – 16k2 = 3

⇔ 16k2- 16k + 3= 0

Ta có: ∆’= (-8)2 – 16.3 = 16> 0

Phương trình trên có 2 nghiệm là:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

23 tháng 6 2017

A B C M N Q I H a D

Bạn vẽ hình rồi kí hiệu như trên.

a) \(\dfrac{AB}{AC}=\dfrac{1}{\sqrt{3}}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{1}{3}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)(Cái này áp dụng hệ thức lượng tam giác dạng \(c^2=a\cdot c'\)).

Ta có : \(\left\{{}\begin{matrix}\dfrac{BH}{CH}=\dfrac{1}{3}\\CH-BH=8\end{matrix}\right.\) => Hiệu số phần bằng nhau là 2.

Ta tính được : \(\left\{{}\begin{matrix}CH=\dfrac{8}{2}\cdot3=12\\BH=\dfrac{12}{3}=4\end{matrix}\right.\) => \(BC=BH+CH=16\).

\(\dfrac{AB^2}{AC^2}=\dfrac{1}{3}\), mà \(AB^2+AC^2=BC^2=16^2=256\)

Tổng số phần bằng nhau là 4.

\(\Rightarrow\left\{{}\begin{matrix}AB^2=\dfrac{256}{4}=64\\AC^2=\dfrac{256}{4}\cdot3=192\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=8\\AC=8\sqrt{3}\end{matrix}\right.\)

Vậy \(\Delta ABC\)\(AB=8,AC=8\sqrt{3},BC=16\).

b)\(S_{MNIQ}=MQ\cdot MN=a\cdot MN\) (kí hiệu như hình).

Trong đó : \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{8\cdot8\sqrt{3}}{16}=4\sqrt{3}\)

+) \(AD=AH-HD=AH-MQ=4\sqrt{3}-a\)

+) \(MN\)//\(BC\Rightarrow\Delta AMN\) đồng dạng với \(\Delta ABC\)

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{AD}{AH}\Rightarrow MN=\dfrac{BC\cdot AD}{AH}\)

\(=\dfrac{16\cdot\left(4\sqrt{3}-a\right)}{4\sqrt{3}}=\dfrac{4\cdot\left(4\sqrt{3}-a\right)}{\sqrt{3}}\)

=> \(S_{MNIQ}=MQ\cdot MN=a\cdot\left(\dfrac{4\cdot\left(4\sqrt{3}-a\right)}{\sqrt{3}}\right)=\dfrac{16\sqrt{3}a-4a^2}{\sqrt{3}}\)

\(=\dfrac{-\left(4a^2-16\sqrt{3}a\right)}{\sqrt{3}}=-\dfrac{\left[\left(2a-4\sqrt{3}\right)^2-48\right]}{\sqrt{3}}\)

\(=\dfrac{48-\left(2a-4\sqrt{3}\right)^2}{\sqrt{3}}=\dfrac{48}{\sqrt{3}}-\dfrac{\left(2a-4\sqrt{3}\right)^2}{\sqrt{3}}\le\dfrac{48}{\sqrt{3}}=16\sqrt{3}\)

Vậy \(S_{MNIQ-max}=16\sqrt{3}\Leftrightarrow a=2\sqrt{3}\).

23 tháng 6 2017

làm hộ mình vài bài đại số vào trang mình là thấy

giúp voi

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

1
29 tháng 9 2016

khó quá đi à

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam iacs ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

0