K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
C
17 tháng 3 2017
SBMN = \(\frac{1}{2}\)BN.h1 (h1 là đường tam giác BMN cao kẻ từ M)
=\(\frac{1}{2}\)\(\frac{BC}{3}\)\(\frac{2h}{3}\) (h là đường cao tam giác ABC kẻ từ A)
= \(\frac{2}{9}\)SABC
Tương tự cho tam giác AMP và CNP
=> SMNP = SABC - 3SBMN
= SABC - \(\frac{2}{3}\)SABC
= \(\frac{1}{3}\)SABC
= \(\frac{27}{3}\) = 9 cm2
A B C M N O
Hai tam giác ACM và tg BCM có chung đường cao từ C->AB nên
\(\dfrac{S_{ACM}}{S_{BCM}}=\dfrac{AM}{BM}=1\Rightarrow S_{ACM}=S_{BCM}=\dfrac{S_{ABC}}{2}=\dfrac{70}{2}=35cm^2\)
Hai tg BCN và tg ABN có chung đường cao từ B->AC nên
\(\dfrac{S_{BCN}}{S_{ABN}}=\dfrac{CN}{NA}=\dfrac{2}{3}\) mà \(S_{BCN}+S_{ABN}=S_{ABC}=70cm^2\)
\(\Rightarrow S_{BCN}=2x\dfrac{S_{ABC}}{2+3}=2x\dfrac{70}{5}=28cm^2\)
\(\Rightarrow S_{ABN}=S_{ABC}-S_{BCN}=70-28=42cm^2\)
Hai tg AMN và tg BMN có chung đường cao từ N->AB nên
\(\dfrac{S_{AMN}}{S_{BMN}}=\dfrac{AM}{BM}=1\Rightarrow S_{AMN}=S_{BMN}=\dfrac{S_{ABN}}{2}=\dfrac{42}{2}=21cm^2\)
Hai tam giác BMN và tam giác BCN có chung BN nên
\(\dfrac{S_{BMN}}{S_{BCN}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{21}{28}=\dfrac{3}{4}\)
Hai tg BOM và tam giác BOC có chung BO nên
\(\dfrac{S_{BOM}}{S_{BOC}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{3}{4}\)
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=28cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCN}}{4+3}=4x\dfrac{28}{7}=16cm^2\)
Sorry!
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=35cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCM}}{4+3}=4x\dfrac{35}{7}=20cm^2\)