Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. Dễ thấy \(\Delta AML\approx\Delta LKC\left(g-g\right)\)
\(\Rightarrow\frac{AL}{LC}=\sqrt{\frac{S_{\Delta AML}}{S_{\Delta LKC}}}=\sqrt{\frac{42.7283}{51.4231}}\approx0.9115461896\)
\(\Rightarrow\frac{AL}{AC}=\frac{0.9115461896}{0.9115461896+1}=0.476863282\)
Lại có \(\Delta AML\approx\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{S_{AML}}{S_{ABC}}=\left(\frac{AL}{AC}\right)^2=0.476863282^2=0.2273985897\)
\(\Rightarrow S_{\Delta ABC}=\frac{S_{\Delta AML}}{0.2273985897}=\frac{42.7283}{0.2273985897}\approx187.9\left(cm^2\right)\)
1. Ta có \(\frac{BH}{CH}=\frac{\sqrt{7}}{\sqrt{5}}\Rightarrow BH=\frac{\sqrt{7}}{\sqrt{5}}CH\)
Mặt khác \(BC=\sqrt{11}\Rightarrow BH+CH=11\)
\(\Rightarrow\frac{\sqrt{7}}{\sqrt{5}}CH+CH=11\)
\(\Leftrightarrow CH=\frac{-55+11\sqrt{35}}{2}\) và \(BH=\frac{77-11\sqrt{35}}{2}\)
Có BH, CH và BC tính đc AB, AC \(\left(AB=\sqrt{BH.BC};AC=\sqrt{CH.BC}\right)\)
Từ đó tính đc chu vi tam giác ABC.
2. Để cj gửi hình qua gmail cho
3. Chỉ còn cách làm từng bước thôi e
\(B=31+\frac{27}{\frac{30127}{2008}}=31+\frac{54216}{30127}=32+\frac{24089}{30127}\)
Để viết liên phân số, ta bấm phím tìm thương và số dư:
(Mỗi số b1, b2, b3, ..., bn-1 chính là thương; số chia của phép chia trước là số bị chia của phép chia sau, còn số dư của phép chia trước là số chia của phép chia sau, nhớ nhá)
- B1: Tìm thương và số dư của 30127 cho 24089, thương là 1, dư 6038, viết \(B=32+\frac{1}{1+...}\)
- B2: Tìm thương và số dư của 24089 cho 6038, thương là 3, dư 5975, viết \(B=32+\frac{1}{1+\frac{1}{3+...}}\)
- B3: Tìm thương và số dư của 6038 cho 5975, thương là 1, dư 63, viết \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+...}}}\)
- B4: Tìm thương và số dư của 5975 cho 63, thương là 94, dư 53, viết \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+...}}}}\)
...
Cứ làm như vậy, đến khi số dư là 1 thì dừng lại, phân số cuối cùng \(\frac{1}{b_n}\) thì bn chính là số chia cuối cùng, bn = 3
Kết quả: \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+\frac{1}{1+\frac{1}{5+\frac{1}{3+\frac{1}{3}}}}}}}}\)
bài 1
mình khỏi vẽ hình nha
dễ thấy
\(CH=BH\cdot\dfrac{\sqrt{5}}{\sqrt{7}}\)
mà \(CH+BH=BC=\sqrt{11}\)
\(\Rightarrow\left\{{}\begin{matrix}CH\approx1.519146459\\BH\approx1.797478331\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB\approx2.441630847\\AC\approx2.2446467\end{matrix}\right.\)
\(\Rightarrow P_{ABC}\approx8.002902337\)
câu 3
\(B=\dfrac{988153}{30127}=32+\dfrac{1}{\dfrac{30127}{24089}}=32+\dfrac{1}{1+\dfrac{1}{\dfrac{24089}{6038}}}=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{\dfrac{6038}{5975}}}}=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{\dfrac{5975}{63}}}}}\)
\(B=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{94+\dfrac{1}{\dfrac{63}{53}}}}}}=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{94+\dfrac{1}{1+\dfrac{1}{\dfrac{53}{10}}}}}}}\)
\(B=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{94+\dfrac{1}{1+\dfrac{1}{5+\dfrac{1}{\dfrac{10}{3}}}}}}}}\)
\(B=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{94+\dfrac{1}{1+\dfrac{1}{5+\dfrac{1}{3+\dfrac{1}{3}}}}}}}}\)
vậy \(\left\{b_1;b_2;...;b_n\right\}=\left\{32;1;3;1;94;1;5;3;3\right\}\)
sức mình đến đây thôi
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}=53^0\)
=>\(\widehat{C}=37^0\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8(cm)
a. Ta có: AB2 = 62 = 36
AC2 = 4,52 = 20,25
BC2 = 7,52 = 56,25
Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)
Kẻ AH ⊥ BC
Ta có: AH.BC = AB.AC
b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.Câu b
Từ N kể đường thẳng song song với BC cắt đường thẳng AB tại K => KBCN là hình thang (*)
Lại có góc BKN = ABC ( đồng vị), CNK = ACB (đồng vị) và ABC = ACB nên BKN = CNK (**)
từ (*) và (**) => KBCN là hình thang cân => BK = CN = BM.
=> AK = AN nên tam giác AKN cân tại A => AO là đường trung trực của KN => OK = ON (4)
vì OI là trung trực của MN nên OM = ON (5)
từ (4) và (5) => OM = OK => tam giác OMK cân tại O lại có BM = BK (cmt) nên OB v^g góc với AB.
Tam giác ABO và Tam giác ACO có: AB = ÃC, BAO = CAO (gt) , AO chung nên tam giác ABO = tam giác ACO (c,g,c) => ACO = ABO = 90độ. hay OC vuông góc với AC.