Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(NK=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔMKN vuông tại K có \(\sin N=\dfrac{MK}{MN}=\dfrac{4}{5}\)
nên \(\widehat{N}\simeq53^0\)
b: Xét ΔMKN vuông tại K có KC là đường cao
nên \(MC\cdot MN=MK^2\left(1\right)\)
Xét ΔMKP vuông tại K có KD là đường cao
nên \(MD\cdot MP=MK^2\left(2\right)\)
Từ (1) và (2) suy ra \(MC\cdot MN=MD\cdot MP\)
M N P K E F 1 1 1
mk chỉ nêu hướng giải còn bn tự trình bày nha
a,Ta có MN=3cm ,MP=4cm
=>NP=5cm
Ta có MN2=NK.NP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG )
=>NK=32:5=1,8cm
T2 BN TÍNH ĐC KP
Lại có MK2=NK.KP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG)
=>MK=2,4cm
Lại có MK2=MF.MP
=>MF=1,44cm
b, bn C/m MEKF là hcn =>\(\widehat{M_1}=\widehat{E_1}\)
Ta có \(\widehat{M_1}+\widehat{N}=90^O,\widehat{M_1}=\widehat{E_1}\)
=> \(\widehat{E_1}+\widehat{N}=90^O\)
Lại có \(\widehat{E_1}+\widehat{F_1}=90^O\)
\(\Rightarrow\widehat{F_1}=\widehat{N}\)=> \(\Delta EFM\)ĐỒNG DẠNG VS\(\Delta PNM\)(dpcm)
tk mk nha
chúc bn học giỏi
a: NP=NI+IP
=5+7=12(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NI\cdot NP\\MP^2=PK\cdot PN\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}MN=\sqrt{5\cdot12}=2\sqrt{15}\left(cm\right)\\MP=\sqrt{7\cdot12}=2\sqrt{21}\left(cm\right)\end{matrix}\right.\)
b: trung tâm là cái gì vậy bạn?
c: Nếu kẻ như thế thì H trùng với I rồi bạn
2.cho tam giác ABC vuông tại A biết AB=12,BC=20 tính các tỉ số lượng giác của góc C
BAN TU VE HINH NHA
a, trong tam giác MNK có \(\sin N=\frac{4}{5}\Rightarrow GOCN\approx53\)
ap dung dl pitago vao tam giac vuong MNK co \(NK^2+MK^2=NM^2\Rightarrow NK^2=5^2-4^2=3^2\Rightarrow NK=3\)
B, ap dung he thuc luong vao tam giac vuong MNK co \(MK^2=MC\cdot MN\)
tam giac vuong MKP co\(MK^2=MD\cdot MP\)
tu day suy ra MC*MN=MD*MP
C, ta co \(NP=NK+KP\)
ma \(NK=MK\cdot cotN\) \(KP=MK\cdot cotP\)
suy ra \(NP=MK\cdot\left(cotN+cotP\right)\)
D, ta co trong tam giac vuong MDK \(MD=MK\cdot cosM=4\cdot cos30=2\sqrt{3}\)
ma trong tam giac vuong MKP c o\(MK^2=MD\cdot MP\Rightarrow MP=\frac{4^2}{2\sqrt{3}}=\frac{8\sqrt{3}}{3}\)
lai co \(MD+DP=MP\Rightarrow DP=\frac{2\sqrt{3}}{3}\)