Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy MN là đường trung bình của tam giác ABC
Do đó MN//AC và MN=1/2.AC
Tương tự: DF là đtb của tam giác AHC. Suy ra DF//AC,DF=1/2.AC
Mặt khác: góc MDH+góc CDH=góc BHC+góc HAC=90^0
Do đó tứ giác MNFD là hcn.
chứng minh tương tự ta cũng sẽ có:MEFP là hcn.
P/s: Do mới xài nên chả biết up cái ảnh ở đâu nên bạn tự vẽ hình nhé
bài 3
A B C D E M N K K' x I O
Gọi giao điểm của EM với AC là K' ( K' \(\in\)AC )
Ta sẽ chứng minh K' \(\equiv\)K
Thật vậy, gọi giao điểm AC và MN là O ; K'N cắt DC tại I
dễ thấy O là trung điểm MN
do MN // EI \(\Rightarrow\frac{MO}{EC}=\frac{K'O}{K'C}=\frac{ON}{CI}\)\(\Rightarrow EC=CI\)
\(\Delta NEI\)có NC là đường cao vừa là trung tuyến nên cân tại N
\(\Rightarrow\)NC là đường phân giác của \(\widehat{ENI}\)
Mà \(\widehat{K'NE}+\widehat{ENI}=180^o\) có \(NM\perp NC\)nên NM là đường phân giác \(\widehat{K'NE}\)( 1 )
mặt khác : NM là đường phân giác \(\widehat{KNE}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(K'\equiv K\)hay A,K,C thẳng hàng
A B C H M E F D
Trên tia đối tia HC lấy D sao cho HD = HC
Tứ giác DECF có DH = HC ; EH = HF nên là hình bình hành
\(\Rightarrow\)DE // CF
\(\Rightarrow\)DE \(\perp\)CH ; BE \(\perp\)DH
\(\Rightarrow\)E là trực tâm tam giác DBH \(\Rightarrow HE\perp BD\)
Xét \(\Delta DBC\)có DH = HC ; BM = MC nên MH là đường trung bình
\(\Rightarrow\)MH // BD
\(\Rightarrow\)MH \(\perp EF\)
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
ta có: AB//EH(gt) hay AD//EH
DH//AC(gt) hay DH//AE
suy ra ADHE là hình bình hành (1)
Ta lại có góc DAE =90độ (2)
Từ (1) và (2) suy ra ADHF là hình chữ nhật
b) Áp dụng định lý py-ta -go trong tam giác vuông ABC có:
BC2 =AB2+AC2
BC2= 62 +82
BC2=36+64
BC2=100=căn bật 2 của 100 =10
mấy kia bạn tự tham khảo nha
c) ta có ;AE=EC(=4cm)
AD=DB(=3cm)
suy ra DE là đường trung bình của tam giác ABC
Suy ra DE//MN hay DE//BC
vậy DEMN là hình thang