K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

Chọn đáp án D.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Chứng minh tứ giác ADHE nội tiếp trong một đường tròn.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Trong nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia tiếp tuyến Ax với đường tròn (O)

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

30 tháng 5 2017

A B C E D H M K H

a) Xét tứ giác ADHE có: 

       \(\widehat{AEH}+\widehat{ADH}=90^o+90^o=180^o\)

=> tứ giác ADHE nội tiếp đường tròn đường kính AH.

b) hơi khó, mình chịu thôi, nhưng chỉ cần CM góc HED = góc EAM là mình sẽ làm được.

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

b: góc EDH=góc BAF

góc FDH=góc ECB

mà góc BAF=góc ECB

nên góc EDH=góc FDH

=>DH là phân giác của góc EDF

a: Xét tứ giác ADHE có

góc AdH+góc AEH=180 độ

=>ADHElà tứ giác nội tiếp

I là trung điểm của AH

b: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

góc EDB=góc BAF

góc FDB=góc ECB
mà góc BAF=góc ECB

nên góc EDB=góc FDB

=>DB là phân giác của góc EDF

26 tháng 1 2023

và KH/HF=DK/DF đc ko bạn câu b)

25 tháng 4 2020

A K I D E H B F C

a ) Ta có : \(BD\perp AC,CE\perp AB\)

\(\Rightarrow\widehat{ADH}=\widehat{AEH}=90^0,\widehat{BDC}=\widehat{BEC}=90^0\)

\(\Rightarrow ADHE,BEDC\) nội tiếp

b . Ta có : \(\widehat{DHC}=\widehat{EHB},\widehat{HDC}=\widehat{HEB}=90^0\)

\(\Rightarrow\Delta HDC~\Delta HEB\left(g.g\right)\)

\(\Rightarrow\frac{HD}{HE}=\frac{HC}{HB}\Rightarrow HD.HB=HE.HC\)

c . Vì H là trực tâm \(\Delta ABC\Rightarrow AH\perp BC=F\)

Lại có : \(\widehat{AHD}=\widehat{CBF}\left(+\widehat{FAC}=90^0\right)\)

\(\widehat{AID}=\widehat{ACB}\Rightarrow\widehat{AID}=\widehat{AHD}\)

\(\Rightarrow\Delta AHI\) cân tại A 

Mà \(AD\perp HI\Rightarrow AD\) là trung trực của HI \(\Rightarrow\)AC là đường trung trực của của HI.

d ) Từ câu c \(\Rightarrow AI=AH\)

Tương tự \(\Rightarrow AK=AH\Rightarrow A\) là tâm đường tròn ngoại tiếp \(\Delta HIK\)