K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

7 tháng 5 2022

a/

Ta có D và E cùng nhìn HC dưới 1 góc vuông nên D và E thuộc đường tròn đường kính HC => CDHE là tứ giác nội tiếp

Ta có E và F cùng nhìn BC dưới 1 góc vuông nên E và F thuộc đường tròn đường kính BC => BCEF là tứ giác nội tiếp

b/ Xét tg MEB và tg MCF có

\(\widehat{EMC}\) chung

\(\widehat{MEB}=\widehat{MCF}\) (góc nội tiếp cùng chắn cung BF)

=> tg MEB đồng dạng với tg MCF (g.g.g)

\(\Rightarrow\dfrac{ME}{MC}=\dfrac{MB}{MF}\Rightarrow MB.MC=ME.MF\)

 

 

 

b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)

mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)

\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp

\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)

câu c tí nữa làm :P

c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD

Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)

Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)

\(\Rightarrow ID.IH=IE.IF\)

 
20 tháng 3 2019

ai giúp mk vs

10 tháng 4 2019

A B C O P F E M N Q R S T

a) Từ O hạ OT vuông góc với MN tại T. Dễ thấy OE là trung trực AC nên OE vuông góc AC.

Mà AC // EM nên OE vuông góc EM. Từ đó ^OEM = ^OCM = ^OTM = 900, suy ra 5 điểm O,E,M,C,T cùng thuộc 1 đường tròn.

Tương tự, ta có 5 điểm O,F,B,N,T cùng thuộc 1 đường tròn. Do đó ^OTE = ^OCE = ^OAE = ^OBF = ^OTF.

Từ đó 3 điểm E,F,T thẳng hàng. Vậy thì ^OCT = ^ OEA = ^OEC = ^OTC.

Suy ra \(\Delta\)OCT cân tại O hay OT = OC. Khi đó MN tiếp xúc với (O) tại T.  Theo tính chất 2 tiếp tuyến giao nhau:

BN = TN, CM = TM => BN + CM = MN (đpcm).

b) Gọi đường thẳng CR cắt (O) tại S. Ta sẽ chỉ ra S,B,Q thẳng hàng. Thật vậy:

Ta có: ^AQR + ^ACM = 1800 => ^AQR = 1800 - ^ACM = ^ABC = 1800 - ^ASR => Tứ giác ASRQ nội tiếp

=> ^RSQ = ^RAQ = 1800 - ^AQR - ^ARQ = 1800 - ^ABC - ^ACB = ^BAC = ^CSB.

Từ đó 3 điểm S,B,Q thẳng hàng (Vì SB trùng SQ). Vậy BQ và CR cắt nhau trên đường tròn (O) (đpcm).

26 tháng 5 2017

BAC là tam giác nhọn, DOC là vuông, bằng nhau = cách nào?

26 tháng 5 2017

bạn cố gắng là bạn làm được