K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

Xét tam giác AEH và tam giác AHB, có:

\(\widehat{AHB}=\widehat{AEH}=90^0\)

\(\widehat{A}:chung\)

Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )

1 tháng 3 2020

A B C H E F I K 1 1 1

a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b)  Xét tam giác AEH và tam giác AHB có:

\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)

c) Xét tam giác AHC và tam giác AFH có:

\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)

\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ ) 

\(\Rightarrow AH^2=AC.AF\)

d) Xét tứ giác AEHF có:

\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)

\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )

\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)

Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)

\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)

Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)

Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)

Xét tam giác ABC và tam giác AFE có:

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)

e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)

Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC

\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc)  (6)

Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF

\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc)  (7)

Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)

\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)

25 tháng 2 2019

A B C H

Giải: a) Ta có : \(S_{\Delta ABC}\)\(\frac{AH.BC}{2}\) (1)

                      \(S_{\Delta ABC}\)\(\frac{AB.AC}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)

b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)

Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625

=> BC = 25

Ta có: AH.BC = AB.AC (cmt)

hay AH. 25 = 15.20

=> AH.25 = 300

=> AH = 300 : 25

=> AH = 12

c) chưa hc

23 tháng 4 2020

tui hoc l 6

23 tháng 4 2020

Ớ hok dốt lắm tớ k bít làm đâu

7 tháng 4 2019

Mong mọi người giúp e ạ thứ 3 e kiểm tra rồi ạ!😭

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:
a. Xét tam giác $AHB$ và $CAB$ có:
$\widehat{AHB}=\widehat{CAB}=90^0$

$\widehat{B}$ chung

$\Rightarrow \triangle AHB\sim \triangle CAB$ (g.g)

b. Từ tam giác đồng dạng phần a suy ra:

$\frac{HB}{AB}=\frac{AB}{CB}$

$\Rightarrow HB=\frac{AB^2}{BC}=\frac{AB^2}{\sqrt{AB^2+AC^2}}=\frac{15^2}{\sqrt{15^2+20^2}}=9$ (cm)

c. Xét tam giác $AHD$ và $ABH$ có:

$\widehat{A}$ chung

$\widehat{ADH}=\widehat{AHB}=90^0$

$\Righarrow \triangle AHD\sim \triangle ABH$ (g.g)

$\Rightarrow \frac{AH}{AB}=\frac{AD}{AH}$

$\Rightarrow AB.AD=AH^2(*)$

Tương tự ta cũng chỉ ra $\triangle AHE\sim \triangle ACH$ (g.g)

$\Rightarrow AE.AC=AH^2(**)$
Từ $(*); (**)\Rightarrow AB.AD=AE.AC$ (đpcm)

 

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Hình vẽ: