Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
K A B C D E H
a, Vì ^KAB là góc ngoài của tg ABH
=> ^KAB = ^ABH + ^AHB ( tc )
hay ^KAB = ^ABH + 90o (1)
Ta có: ^DBC = ^ABH + ^ABD = ^ABH + 90o (2)
Từ (1) và (2) => ^KAB = ^DBC
Xét tg DBC và tg BAK có:
BD = BA ( tg ABD vuông cân tại B )
BC = KA (gt)
^DBC = ^KAB (cmt)
=> tg DBC = tg BAK (cgc)
Trả lời:
b, Gọi M là giao điểm của KC và BE
Vì ^KAC là góc ngoài của tg AHC
=> ^KAC = ^ACH + ^AHC (tc)
hay ^KAC = ^ACH + 90o (3)
Ta có: ^BCE = ^ACH + ^ACE = ^ACH + 90o (4)
Từ (3) và (4) => ^KAC = ^BCE
Xét tg KAC và tg BCE có:
KA = BC ( gt )
^KAC = ^BCE ( cmt )
AC = CE ( tg ACE vuông cân tại C )
=> tg KAC = gt BCE ( c - g - c )
=> ^AKC = ^CBE ( 2 góc tương ứng )
=> ^AKC + ^KCB = ^CBE + ^KCB
Mà tg KHC vuông tại H có: ^AKC +^KCB = 90o (tc)
=> ^CBE + ^KCB = 90o
=> tg MBC vuông tại M (tc)
=> KC \(\perp\)BE ( đpcm )
c, Gọi N là giao điểm của KB và DC
Vì tg DBC = tg BAK ( chứng minh ở ý a )
=> ^DCB = ^AKB ( 2 góc tương ứng )
=> ^DCB + ^KBC = ^AKB + ^KBC
Mà tg KBH vuông tại H có: ^AKB + ^KBC = 90o (tc)
=> ^DCB = ^KBC = 90o
=> tg NBC vuông tại N (tc)
=> KB \(\perp\)DC
Xét KBC có:
CD là đường cao thứ nhất ( CD \(\perp\)KB )
KH là đường cao thứ hai ( KH \(\perp\)BC )
BE là đường cao thứ ba ( BE \(\perp\)KC )
=> CD, KH, BE đồng quy ( tc ) ( đpcm ).
Câu 16:
\(\text{Vì}\)\(\hept{\begin{cases}2.\left(x-1\right)^2\ge0\\y^2\ge0\end{cases}}\)
\(\Rightarrow2.\left(x-1\right)^2+y^2\ge0\)
\(\Rightarrow2.\left(x-1\right)^2+y^2+2021\ge2021\)
\(\Rightarrow A\ge2021\)
\(\text{Dấu '' = '' xảy ra khi:}\)
\(\hept{\begin{cases}\left(x-1\right)^2=0\\y^2=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
\(\text{Vậy giá trị nhỏ nhất của biểu thức A là: }\)\(2021\)\(khi\)\(x=1\)\(;\)\(y=0\)
a, Ta có BD//AC ( cùng vuông với AB )
BD=AC ( gt về các tam giác cân )
=> DBCA là hình bình hành => AD //BC (1)
Tương tự chứng minh BAEC là hình bình hành => AE//BC (2)
=> A,D,E thẳng hàng theo tiên đề ơ cơ lít :D