K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

O A B C D K

Kẽ OA cắt đường tròn tại D cắt BC tại K

Ta có OA = OB = OD = R

\(\Rightarrow\)\(\Delta ABD\) vuông tại D

\(\Rightarrow BD=\sqrt{OD^2-AB^2}=\sqrt{10^2-8^2}=6\)

Ta có OK là đường trung trực của BC nên \(\hept{\begin{cases}OK⊥BC\\BK=CK\end{cases}}\)

Ta lại có: \(S_{\Delta ABD}=\frac{1}{2}AB.BD=\frac{1}{2}AD.BK\)

\(\Rightarrow BK=\frac{AB.BD}{AD}=\frac{8.6}{10}=4,8\)

\(\Rightarrow BC=2BK=4,8.2=9,6\)

18 tháng 2 2017

Viết nhầm tùm lum hết. Do không thấy cái hình. Mà thôi nhìn hình sửa hộ luôn  nhé

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc FHE=180-60=120 độ

=>1/2(sđ cung FE+sđ cung BC)=120 độ

=>sđ cung FE=60 độ

=>góc FOE=60 độ

góc IFO=góc IFH+góc OFH

=90 độ

=>góc IEO=90 độ

=>IFOE nội tiếp đường tròn đường kính OI

góc FOE=60 độ

=>góc IOE=30 độ

=>OE/OI=1/căn 3

=>OI=Rcăn 3

=>R1=Rcăn 3/2

AH
Akai Haruma
Giáo viên
12 tháng 4 2021

Lời giải:
Ta nhớ lại công thức, trong tam giác $ABC$ có $AB=c, BC=a, CA=b$ thì:

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$.

Ứng vào bài toán, với $\sin A=\sin 120=\frac{\sqrt{3}}{2}$ và $a=BC=6$ thì:

$R=\frac{a}{2\sin A}=\frac{6}{2.\frac{\sqrt{3}}{2}}=2\sqrt{3}$