Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Tam giác AMD có AB vừa là đường trung tuyến vừa là đường cao
=> Tam giác AMD cân tại A
=> AB cũng đồng thời là đường phân giác của tam giác AMD
=> góc MAB = góc BAD
Tương tự ta CM được AC là đường trung tuyến của tam giác AME
=> góc CAM = góc CAE
=> \(\widehat{DAE}=\widehat{MAB}+\widehat{BAD}+\widehat{CAM}+\widehat{CAE}\)\(=2\widehat{BAC}=140\sigma\)
b.Tam giác IMD có IB vừa là đường cao vừa là đường trung tuyến
=> IB là đường phân giác của góc DIM
=> IB là đường phân giác ngoài của tam giác IMK
Tương tự ta có : IC là đường phân giác của góc MKE
=> IC là đường phân giác ngoài của tam giác IMK
Tam giác IMK có 2 đường phân giác ngoài kẻ từ I và K cắt nhau tại A
=> MA là đường phân giác trong của tam giác IMK
=> MA là đường phân giác của góc IMK
c.Tam giác ADM cân tại A => AD=AM
Tam giác AEM cân tại A => AE=AM
=> AD=AE => tam giác ADE cân tại A
Tam giác ADE cân tại A có góc ở đỉnh DAE ko đổi ( = 2* góc ABC )
=> Cạnh đáy DE có đọ dài nhỏ nhất khi cạnh bên AD có độ dài nhỏ nhất
=> AM có độ dài nhỏ nhất
=> AM là đường cao của tam giác ABC
=> M là chân đường cao kẻ từ A xuống BC
F E B D C A 2 1 3 4
a) E đối xứng với D qua AB=> AD=AE và \(\widehat{A_1}=\widehat{A_2}\)
F đối xứng với D qua AC=> AD=AF và \(\widehat{A_3}=\widehat{A_4}\)
\(\Rightarrow AE=\text{AF}\left(=AD\right),\widehat{DAE}+\widehat{D\text{AF}}=2\left(\widehat{A_1}+\widehat{A_3}\right)=2.90^0=180^0\)=> E,A,F thẳng hàng.
Vậy E đối xứng với F qua A(ĐPCM)
b) Ta có: EF=2AD nên EF nhỏ nhất => AD nhỏ nhất => D là chân đường cao kẻ từ A đến BC