K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

a) xét tam giác ABC và tam giác HAC có:

góc C chung

góc BAC = góc AHC (=90độ)

=> ΔABC ∼ ΔHAC (gg)

b) vì ΔABC ∼ ΔHAC (câu a)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(CÁC CẠNH T/Ứ TỈ LỆ)

=> AB.AB= HB.BC

=> \(AB^2\)= HB.BC

17 tháng 6 2021

A B C H I K

a, bạn tự làm nhé 

b, Xét tam giác ABH và tam giác CAH ta có 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH  ~ tam giác CAH ( g.g )

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)

17 tháng 6 2021

c, mình làm hơi tắt nhé, bạn dùng tỉ lệ thức xác định tam giác đồng dạng nhé

Dễ có :  \(AH^2=AK.AC\)(1) 

\(AH^2=AI.AB\)(2)  

Từ (1) ; (2) suy ra : \(AK.AC=AI.AB\Rightarrow\frac{AK}{AB}=\frac{AI}{AC}\)

Xét tam giác AIK và tam giác ACB

^A _ chung 

\(\frac{AK}{AB}=\frac{AI}{AC}\)( cmt )

Vậy tam giác AIK ~ tam giác ACB ( c.g.c )

Bài 1 Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F. a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 = AE.AB. b) Chứng minh rằng AE.AB = AF.AC. c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC. d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF Bài 2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở...
Đọc tiếp

Bài 1

Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
Bài 2/

Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.

1/ Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.

Chứng Minh: \(\frac{IE}{IF}=\frac{KB}{KC}\)

0